Shortcuts to Adiabaticity

Adolfo del Campo University of Luxembourg & DIPC

Carnot Workshop on Quantum Thermodynamics and Open Quantum Systems

25-27 November 2024, Dijon, France

Group at Luxembourg

Current members

K. Takahashi A. Grabarits S. Shinn K. R. Swain M. Massaro

Outline

Part I: Shortcuts To Adiabaticity

Part II: Many-particle Quantum Machines

Part I: Shortcuts to Adiabaticity

Fast and robust driving protocols reducing excitations

Far-from-equilibrium dynamics

Strongly correlated systems

Quantum information and computation

Optimal control theory

Consider driving a system Hamiltonian

$$\hat{H}_0(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Write the adiabatic approximation

$$|\psi_n(t)\rangle = \exp\left[-\frac{i}{\hbar}\int_0^t E_n(s)ds - \int_0^t \langle n(s)|\partial_s n(s)\rangle ds\right]|n(t)\rangle$$

Consider driving a system Hamiltonian

$$\hat{H}_0(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Write the adiabatic approximation

$$|\psi_n(t)\rangle = \exp\left[-\frac{i}{\hbar}\int_0^t E_n(s)ds - \int_0^t \langle n(s)|\partial_s n(s)\rangle ds\right]|n(t)\rangle$$

Is there a Hamiltonian for which the adiabatic approximation is exact?

$$i\hbar\partial_t |\psi_n(t)\rangle = \hat{H}(t)|\psi_n(t)\rangle$$

Consider driving a system Hamiltonian

$$\hat{H}_0(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Write the adiabatic approximation

$$|\psi_n(t)\rangle = \exp\left[-\frac{i}{\hbar}\int_0^t E_n(s)ds - \int_0^t \langle n(s)|\partial_s n(s)\rangle ds\right]|n(t)\rangle$$

Is there a Hamiltonian for which the adiabatic approximation is exact?

$$i\hbar\partial_t |\psi_n(t)\rangle = \hat{H}(t)|\psi_n(t)\rangle$$

Yes, indeed!

$$\hat{H}(t) \equiv \hat{H}_0(t) + \hat{H}_1(t)$$
$$\hat{H}_1(t) = i\hbar \sum_n \left(|\partial_t n\rangle \langle n| - \langle n|\partial_t n\rangle |n\rangle \langle n| \right)$$

Consider driving a system Hamiltonian

$$\hat{H}_0(t)|n(t)\rangle = E_n(t)|n(t)\rangle$$

Write the adiabatic approximation

$$|\psi_n(t)\rangle = \exp\left[-\frac{i}{\hbar}\int_0^t E_n(s)ds - \int_0^t \langle n(s)|\partial_s n(s)\rangle ds\right]|n(t)\rangle$$

Is there a Hamiltonian for which the adiabatic approximation is exact?

$$i\hbar\partial_t |\psi_n(t)\rangle = \hat{H}(t)|\psi_n(t)\rangle$$

Yes, indeed!

$$\hat{H}(t) \equiv \hat{H}_0(t) + \hat{H}_1(t)$$
$$\hat{H}_1(t) = i\hbar \sum_{n \neq m} \sum_m \frac{|m\rangle \langle m|\partial_t \hat{H}_0|n\rangle \langle n|}{E_n(t) - E_m(t)}$$

Theory: Demirplak & Rice 2003, 2005, 2008; = M. V. Berry 2009 "Transitionless quantum driving" CD inspired experiment for TLS: Morsch's group Nature Phys. 2012; NVC: Suter's group PRL 2013

@UniLu

Counterdiabatic driving: applications

Torrontegui et al. Adv. At. Mol. Opt. Phys. 62, 117 (2013) Guery-Odelin et al. Rev. Mod. Phys. 91, 045001 (2019)

CD Experiments: TLS and TDHO

ARTICLE

Received 28 Jan 2016 | Accepted 6 Jul 2016 | Published 11 Aug 2016

DOI: 10.1038/ncomms12479 OPEN

Experimental realization of stimulated Raman shortcut-to-adiabatic passage with cold atoms

Yan-Xiong Du¹, Zhen-Tao Liang¹, Yi-Chao Li², Xian-Xian Yue¹, Qing-Xian Lv¹, Wei Huang¹, Xi Chen², Hui Yan¹ & Shi-Liang Zhu^{1,3,4}

CD for 2 & 3 Level systems

ARTICLE

Received 29 Feb 2016 | Accepted 19 Aug 2016 | Published 27 Sep 2016

DOI: 10.1038/ncomms12999 OPEN

Shortcuts to adiabaticity by counterdiabatic driving for trapped-ion displacement in phase space

Shuoming An¹, Dingshun Lv¹, Adolfo del Campo² & Kihwan Kim¹

CD for systems with Continuous Variables

CD Experiments: Ultracold Gases

$$\omega(t)^2 \to \Omega^2(t) = \omega^2(t) - \frac{3}{4}\frac{\dot{\omega}^2}{\omega^2} + \frac{1}{2}\frac{\ddot{\omega}}{\omega}$$

A. del Campo, PRL **111**, 100502 (2013)

Experiments: Thermal cloud, BEC and 1D Bose gas

Experiments: 1D Bose gas Rohringer et al. Sci. Rep. **5**, 9820 (2015) Experiments: mean-field BEC J.-F. Schaff et al. EPL **93**, 23001 (2011) Experiments: single-particle J.-F. Schaff et al. Phys. Rev. A **82**, 033430 (2010) Theory (quantum fluids) AdC PRA **84**, 031606(R) (2011) AdC & Boshier, Sci. Rep. **2**, 648 (2012) AdC PRL **111**, 100502 (2013)

Adolfo del Campo: adolfo.delcampo@umb.edu

Superadiabatic QHE strokes (e.g. in Otto Cycle)

- AdC, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014); arXiv:1305.3223
- J. Deng et al., Phys. Rev. E 88, 062122 (2013); arXiv:1307.4182
- M. Beau, J. Jaramillo, AdC, Entropy **18**, 168 (2016) (many-particle QHE)

Adolfo del Campo: adolfo.delcampo@uni.lu

Superadiabatic Many-particle QHE Strokes

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

Superadiabatic quantum friction suppression in finite-time thermodynamics

Shujin Deng,¹ Aurélia Chenu,² Pengpeng Diao,¹ Fang Li,¹ Shi Yu,¹ Ivan Coulamy,^{3,4} Adolfo del Campo,³ Haibin Wu^{1,5}*

Counterdiabatic driving: Open systems

Alipour et al. Quantum 4, 336 (2020)

Counterdiabatic driving: Open systems

Prescribed a quantum state trajectory

$$\varrho(t) = \frac{1}{Z_0(t)} e^{-\beta H_0(t)} \qquad H_0(t) = \sum_n E_n |n_t\rangle \langle n_t|$$

Find equation of motion

$$\partial_t \varrho(t) = -i [H_{\rm CD}(t), \varrho(t)] + \sum_n \partial_t \lambda_n(t) |n_t\rangle \langle n_t|$$

$$H_{\rm CD}(t) = H_0(t) + i \sum_n \left(|\partial_t n_t \rangle \langle n_t | - \langle n_t | \partial_t n_t \rangle | n_t \rangle \langle n_t | \right)$$

Physical scenarios?

I) Non-Hermitian systems (Balanced gain and loss)

II) Non-Markovian systems (standard QOS)

Alipour et al. Quantum 4, 336 (2020)

Scenario I: Non-Hermitian systems

Non-Hermitian Hamiltonian

$$H(t) = H_{\rm CD}(t) - i\Gamma(t) = H_{\rm CD}(t) + \frac{i}{2}\sum_{n}\frac{\partial_t \lambda_n(t)}{\lambda_n(t)}|n_t\rangle\langle n_t|$$

Equation of motion

$$\partial_t \varrho(t) = -i \big[H(t) \varrho(t) - \varrho(t) H^{\dagger}(t) \big] \\= -i \big[H_{\rm CD}(t), \varrho(t) \big] - \big\{ \Gamma(t), \varrho(t) \big\}$$

Not trace-preserving $\partial_t \operatorname{Tr}(\varrho(t)) = -2\operatorname{Tr}(\Gamma(t)\varrho(t)) = \sum_n \partial_t \lambda_n(t)$

Balanced gain and loss

Brody Graefe PRL 109, 230405 (2012)
$$\partial_t \varrho = -i(H\varrho - \varrho H^{\dagger}) - \partial_t \operatorname{Tr}(\varrho) \varrho$$

$$= -i[H_{\rm CD}, \varrho] + (2\langle \Gamma \rangle \varrho - \{\Gamma, \varrho\})$$

Alipour et al. Quantum 4, 336 (2020)

Scenario II: Non-Markovian QOS

New term as dissipator

$$\mathcal{D}_{\rm CD}(\varrho) = \sum_{n} \partial_t \lambda_n(t) |n_t\rangle \langle n_t|$$

Introduce Lindblad operators

$$L_{mn}(t) = |m_t\rangle\langle n_t| \qquad \gamma_{mn}(t) = \frac{\partial_t\lambda_m(t)}{r\lambda_n(t)}$$

Lindblad-like form master equation

$$\partial_t \varrho = -i[H_{\rm CD}, \varrho] + \sum_{mn} \gamma_{mn} \left(L_{mn} \varrho L_{mn}^{\dagger} - \frac{1}{2} \{ L_{mn}^{\dagger} L_{mn}, \varrho \} \right)$$

Generally non-Markovian

Alipour et al. Quantum 4, 336 (2020)

 \mathbf{O}

Counterdiabatic driving: Open systems

I) Non-Hermitian evolution (balanced gain and loss)

II) Non-Markovian master equation

Alipour et al. Quantum 4, 336 (2020)

Thermalizing a TDHO (open)

Rotating frame

$$\tilde{\varrho}(t) = U_x \varrho(t) U_x^{\dagger} \qquad U_x = e^{i\frac{m}{2\hbar}\alpha_t \hat{x}^2} \qquad \alpha_t = \frac{\dot{u}_t}{1 - u_t^2} - \frac{\dot{\omega}_t}{\omega_t}$$

STA in Open TDHO simply via dephasing

$$\partial_t \tilde{\varrho} = \frac{1}{i\hbar} \left[\frac{\hat{p}^2}{2m} + \frac{1}{2} m \tilde{\omega}_{\rm CD}^2 \hat{x}^2, \tilde{\varrho} \right] - \gamma_t [\hat{x}, [\hat{x}, \tilde{\varrho}]]$$

Frequency

$$\tilde{\omega}_{\rm CD}^2 = \begin{bmatrix} \omega_t^2 - \frac{3}{4} \left(\frac{\dot{\omega}_t}{\omega_t}\right)^2 + \frac{\ddot{\omega}_t}{2\omega_t} \end{bmatrix} - \Omega_t^2 - \dot{\Omega}_t + \Omega_t \frac{\dot{\omega}_t}{\omega_t} \qquad \Omega_t = -\frac{1}{2} \frac{\dot{\omega}_t}{\omega_t} + \frac{\dot{u}_t}{1 - u_t^2}$$
Dephasing
$$\gamma_t = \frac{m\omega_t}{\hbar} \frac{\dot{u}_t}{(1 - u_t)^2}$$

Alipour et al. Quantum 4, 336 (2020)

Thermalizing a TDHO

Prescribed trajectory

 (β_t, ω_t)

$$\partial_t \tilde{\varrho} = \frac{1}{i\hbar} \left[\frac{\hat{p}^2}{2m} + \frac{1}{2} m \tilde{\omega}_{\rm CD}^2 \hat{x}^2, \tilde{\varrho} \right] - \gamma_t [\hat{x}, [\hat{x}, \tilde{\varrho}]]$$

0.4

0.6

0.8

1.0

0.0

0.2

 $\tilde{\omega}_{\mathrm{CD}}^2/\omega_0^2$

 ω_t^2/ω_0^2

Cooling

Alipour et al. Quantum 4, 336 (2020)

STA in QHE

arXiv:2404.15075 [pdf, other]

An energy efficient quantum-enhanced machine

Waner Hou, Xingyu Zhao, Kamran Rehan, Yi Li, Yue Li, Eric Lutz, Yiheng Lin, Jiangfeng Du

Adolfo del Campo: adolfo.delcampo@uni.lu

Quantifying cost

Norm of counterdiabatic term

[Demirplak & Rice J. Chem. Phys. 129, 154111 (2008); Campbell & Deffner, PRL118, 100601 (2017)]

$$\|\hat{H}_1\|^2 = \frac{\hbar^2}{2\tau^2} \sum_n \operatorname{tr} \dot{\hat{P}}_n^2$$

Energy fluctuations [AdC et al. PRL 109, 115703 (2012); AdC, PRL 126, 180603 (2021)]

$$\Delta H_{\rm CD}^2 = \langle \hat{H}_{\rm CD}^2 \rangle - \langle \hat{H}_{\rm CD} \rangle^2 = \sum_n p_n^0 \langle n(t) | \hat{H}_1^2(t) | n(t) \rangle$$
$$\langle n(t) | \hat{H}_1^2(t) | n(t) \rangle = \dot{\lambda}^2 \chi_f^{(n)}(\lambda) = \dot{\lambda}^2 \sum_{m \neq n} \frac{|\langle m(\lambda) | \frac{d}{d\lambda} \hat{H}_0 | n(\lambda) \rangle|^2}{|\varepsilon_m - \varepsilon_n|^2}$$

Work fluctuations [Funo et al. PRL 118, 100602 (2017)]

$$\langle W(t) \rangle = \langle W(t) \rangle \text{ad} \qquad \text{Var}[W(t)] - \text{Var}[W(t)]_{\text{ad}} = \hbar^2 \sum_n p_n^0 g_{\mu\nu}^{(n)} \dot{\lambda}^{\mu} \dot{\lambda}^{\nu}$$
$$Q_{\mu\nu}^{(n)} = g_{\mu\nu}^{(n)} + i\sigma_{\mu\nu}^{(n)} \qquad Q_{\mu\nu}^{(n)} \coloneqq \langle \partial_{\mu} n(t) | [1 - |n(t)\rangle \langle n(t)|] | \partial_{\nu} n(t) \rangle$$

Quantum speed limits refine the time-energy uncertainty relation

History of Quantum Speed Limits

1945 Mandelstam and Tamm "MT"

1967 Fleming

1990 Anandan, Aharonov

1992 Vaidman, Ulhman

1993 Uffnik

1998 Margolus & Levitin "ML"

2000 Lloyd

2003 Giovannetti, Lloyd, Maccone: MT & ML unified

2003 Bender: no bounds in PT-symmetric QM

2009 Levitin, Toffoli

2013 QSL for Open Quantum Systems

2017 Decoherence times

2019 QSL for Classical Systems

Seminal results

Mandelstam-Tamm (1945)

Heisenberg EOM + definition of time = TEUR

$$\frac{d}{dt}\hat{A} = \frac{1}{i\hbar}[\hat{A},\hat{H}] \qquad \tau(A) = \frac{\Delta A}{\frac{d}{dt}\langle\hat{A}\rangle} \qquad \tau(A)\Delta H \ge \frac{\hbar}{2}$$

Margolus-Levitin (1998)

Survival amplitude, vanishing real and imaginary parts

$$|\Psi(t)\rangle = \sum_{n} c_n e^{-iE_n t/\hbar} |n\rangle \quad a(t) := \langle \psi(0)|\psi(t)\rangle \quad \operatorname{Re}(a) \ge 1 - \frac{2E}{\pi\hbar} t + \operatorname{Im}(a)$$

$$\tau \geq \frac{\hbar\pi}{2E}$$

Distance travelled

Bures angle/length

$$\mathcal{L}(t) = \mathcal{L}(|\Psi(0)\rangle, |\Psi(t)\rangle) = \arccos\sqrt{F(t)}$$
$$F(t) = F[\rho_0, \rho_t] = \left(\operatorname{Tr}\sqrt{\sqrt{\rho_0}\rho_t\sqrt{\rho_0}}\right)^2$$

Quantum Cramer-Rao bound

$$\mathcal{L}(\tau) \le \int_0^\tau ds \sqrt{I_Q(t)/4}$$

Quantum Fisher information

$$\begin{split} I_Q(t) &= \frac{4}{\hbar^2} [\langle \Psi(t) | H(t)^2 | \Psi(t) \rangle - \langle \Psi(t) | H(t) | \Psi(t) \rangle^2] \\ &= \frac{4}{\hbar^2} \mathrm{var}_{\rho(t)} [H(t)] & \begin{array}{l} \text{Energy fluctuations} \\ (\text{unitary dynamics}) \end{array} \end{split}$$

Anandan & Aharonov, PRL 65, 1697 (1990) Uhlmann, Phys. Lett. A 161, 329 (1992)

Quantum Speed Limit

Mandelstam-Tamm QSL for driven systems

Time for something to happen bounded by inverse of average energy fluctuations

$$\tau \ge \tau_{\text{QSL}} = \frac{\hbar \mathcal{L}(\tau)}{\overline{\Delta H}}$$

Anandan & Aharonov, PRL 65, 1697 (1990) Uhlmann, Phys. Lett. A 161, 329 (1992)

Quantum Brachistochrone and Counterdiabatic driving

Time-Optimal Quantum Evolution

Alberto Carlini, Akio Hosoya, Tatsuhiko Koike, and Yosuke Okudaira Phys. Rev. Lett. **96**, 060503 – Published 15 February 2006

• Time-optimal evolution and optimal Hamiltonian with a given initial and final states and bounded energy fluctuations

Believed to be equivalent to counter-diabatic driving

How fast and robust is the quantum adiabatic passage?

Kazutaka Takahashi¹ Published 17 July 2013 • © 2013 IOP Publishing Ltd Journal of Physics A: Mathematical and Theoretical, Volume 46, Number 31 "The result here shows transitionless quantum driving [...] can be derived from the QB equation"

Test with scale-invariant dynamics

For an initial eigenstate

$$H[\omega(0)]\Psi(0) = E(0)\Psi(0)$$

$$\omega(0) \Longrightarrow \omega(t)$$

Solutions of the TDSE after modulating the trap frequency

$$\Psi(t) = \frac{1}{b^{\frac{DN}{2}}} \exp\left[i\frac{m\dot{b}}{2\hbar b}\sum_{i=1}^{N}\vec{r_{i}}^{2} - i\int_{0}^{t}\frac{E(0)}{\hbar b(t')^{2}}dt'\right]\Psi\left(\frac{\vec{r_{1}}}{b},\dots,\frac{\vec{r_{N}}}{b},t=0\right)$$

Scaling factor given by Ermakov equation

$$\ddot{b} + \omega(t)^2 b = \omega_0^2 / b^3$$

AdC, PRL 126, 180603 (2021)

QSL for counter-diabatic driving

Driving Hamiltonian and quantum state

$$H_{\rm CD} = H(t) + H_1(t) \qquad H_1(t) = \frac{\dot{b}}{b}C = \frac{\dot{b}}{b}\frac{1}{2}\sum_{i=1}^N {\{\vec{r}_i, \vec{p}_i\}}$$
$$\Psi(t) = \frac{e^{i\alpha_t}}{b^{\frac{DN}{2}}} \Psi\left(\frac{\vec{r}_1}{b}, \dots, \frac{\vec{r}_N}{b}, t = 0\right)$$

AdC, PRL 126, 180603 (2021)

QSL for counter-diabatic driving

Driving Hamiltonian and quantum state

$$H_{\rm CD} = H(t) + H_1(t) \qquad H_1(t) = \frac{\dot{b}}{b}C = \frac{\dot{b}}{b}\frac{1}{2}\sum_{i=1}^N {\{\vec{r}_i, \vec{p}_i\}}$$
$$\Psi(t) = \frac{e^{i\alpha_t}}{b^{\frac{DN}{2}}} \Psi\left(\frac{\vec{r}_1}{b}, \dots, \frac{\vec{r}_N}{b}, t = 0\right)$$

Speed of evolution and distance traveled

$$\Delta H_{\rm CD}^2 = \left(\frac{\dot{b}}{b}\right)^2 \langle C^2(t) \rangle = \left(\frac{\dot{b}}{b}\right)^2 \hbar^2 \sigma^2$$
$$\gamma(\tau) = \int_0^\tau dt \frac{\Delta H_{\rm CD}(t)}{\hbar} = \sigma \alpha \log b(\tau) = \log \left(\frac{\omega(\tau)}{\omega_0}\right)^{-\alpha \frac{\sigma}{2}}$$

AdC, PRL 126, 180603 (2021)

QSL for counter-diabatic driving

Driving Hamiltonian and quantum state

$$H_{\rm CD} = H(t) + H_1(t) \qquad H_1(t) = \frac{\dot{b}}{b}C = \frac{\dot{b}}{b}\frac{1}{2}\sum_{i=1}^N {\{\vec{r}_i, \vec{p}_i\}}$$
$$\Psi(t) = \frac{e^{i\alpha_t}}{b^{\frac{DN}{2}}} \Psi\left(\frac{\vec{r}_1}{b}, \dots, \frac{\vec{r}_N}{b}, t = 0\right)$$

Speed of evolution and distance traveled

$$\Delta H_{\rm CD}^2 = \left(\frac{\dot{b}}{b}\right)^2 \langle C^2(t) \rangle = \left(\frac{\dot{b}}{b}\right)^2 \hbar^2 \sigma^2$$
$$\gamma(\tau) = \int_0^\tau dt \frac{\Delta H_{\rm CD}(t)}{\hbar} = \sigma \alpha \log b(\tau) = \log \left(\frac{\omega(\tau)}{\omega_0}\right)^{-\alpha \frac{\sigma}{2}}$$

Bures angle (geodesic)

$$\mathcal{L}(\tau) = \arccos\sqrt{F(\tau)} = \arccos\left[\frac{\omega_0}{4\omega(\tau)} \left(1 + \frac{\omega(\tau)}{\omega_0}\right)^2\right]^{-\frac{\sigma^2}{2}}$$

AdC, PRL 126, 180603 (2021)
CD does not saturate the MT QSL

$$\delta \mathcal{L}(\tau) = \int_0^\tau \Delta H(t) dt - \mathcal{L}(\tau) \ge 0$$

$$\delta \mathcal{L}(\tau) = -\alpha \frac{\sigma}{2} \log x - \arccos\left[\left(\frac{1+x}{2\sqrt{x}}\right)^{-\sigma^2}\right] \qquad x = \omega(\tau)/\omega_0$$

AdC, PRL 126, 180603 (2021)

CD does not saturate the MT QSL

Evolution never saturates the speed limit

AdC, PRL 126, 180603 (2021) Bukov, Sels, Polkovnikov, PRX 9, 011034 (2019) Geometric Speed Limit of Accessible Many-Body State Preparation

History of Shortcuts to Adiabaticity

(b) CD

(c) QLC + CD

Adolfo del Campo

Part II: Many-particle Quantum Thermodynamics

Part II: Many-Particle Quantum Heat Engines

Harnessing quantum statistics

♦ Harnessing quantum criticality

I) YY Chen, G Watanabe, YC Yu, XW Guan, AdC, npj Quantum Information 5, 88 (2019)
II) G Watanabe, BP Venkatesh, P Talkner, MJ Hwang, AdC, Phys. Rev. Lett. 124, 210603 (2020)

III) Revathy B S, V Mukherjee, U Divakaran, AdC, Phys. Rev. Research 2, 043247 (2020)

Towards many-particles QHE

Two particles (Bosons/Fermions) in quantum Szilard engine [Kim et al. Phys. Rev. Lett.106 07040 (2011) Bengtsson et al, Phys. Rev. Lett. 120, 100601 (2018)]

Quantum-information engines with many-body states [Diaz de la Cruz & Martin-Delgado, Phys. Rev. A 89, 032327 (2014)]

Nointeracting particles in a nonharmonic trap [Zheng & Poletti, Phys. Rev. E 92, 012110 (2015)]

Super-radiant quantum heat engine [Hardal & Müstecaplıoğlu, Scientific reports 5, 12953 (2015)]

Quantum supremacy of many-particle-thermal machines [Jaramillo, Beau, AdC, New J. Phys. 18, 075019 (2016)]

The power of a critical heat engine [Campisi & Fazio, Nat. Commun. 7, 11895 (2016)]

Scaling-up QHE efficiently via shortcuts to adiabaticity [Beau, Jaramillo, AdC, Entropy 18, 168 (2016)]

Cooperative many-body enhancement of quantum thermal machine power [Niedenzu & Kurizki, NJP 20, 113038 (2018)]

Towards many-particles QHE

Many-body quantum technologies

Victor Mukherjee, Uma Divakaran

The power of a critical heat engine [Campisi & Fazio, Nat. Commun. 7, 11895 (2016)]

Scaling-up QHE efficiently via shortcuts to adiabaticity [Beau, Jaramillo, AdC, Entropy 18, 168 (2016)]

Cooperative many-body enhancement of quantum thermal machine power [Niedenzu & Kurizki, NJP 20, 113038 (2018)]

Finite-time Many-particle QHE (Otto cycle)

Jaramillo et al NJP 18, 075019 (2016); Beau et al Entropy 18, 168 (2016)

Many-particle QHE

Single N-particle engine vs N single-particle engines?

What substance is optimal as working medium?

Quantum supremacy of many-particle thermal machines

J Jaramillo^{1,2}, M Beau^{1,3} and A del Campo^{1,4}

Jaramillo et al NJP 18, 075019 (2016); Beau et al Entropy 18, 168 (2016)

Many-Particle Quantum Heat Engines

• Harnessing interactions

♦ Harnessing quantum statistics

♦ Harnessing quantum criticality

I) YY Chen, G Watanabe, YC Yu, XW Guan, AdC, npj Quantum Information 5, 88 (2019)

II) G Watanabe, BP Venkatesh, P Talkner, MJ Hwang, AdC, Phys. Rev. Lett. 124, 210603 (2020)

III) Revathy B S, V Mukherjee, U Divakaran, AdC, Phys. Rev. Research 2, 043247 (2020)

Interaction-driven QHE

- Multi stroke cycle
- Thermal reservoirs
- Interaction strength c

2 isentropes (interaction ramps up/down) + 2 isochores (heating & cooling)

Interparticle interaction strength

YY Chen et al npj Quantum Information 5, 88 (2019)

Working medium: many-body, interacting

- Ultracold bosons confined in tight-waveguide
- Effective Lieb-Liniger model: 1D bosons with contact interactions

$$\hat{H}_{\rm LL} = -\sum_{j=1}^{N} \partial_{x_j}^2 + \sum_{1 \le j < \ell \le N} 2c\delta(x_j - x_\ell)$$

- Tunable interactions via Feshbach & confinement-induced resonance
- Universal low-energy behaviour: Luttinger liquid

YY Chen et al npj Quantum Information 5, 88 (2019)

Working medium: many-body, interacting

- D Interacting Bose gas: Thermodynamics from coordinate Bethe-ansatz
- Finite-temperature, finite size, box trap
- Bethe Ansatz Eqs

$$\Psi_{\{\epsilon_i k_i\}}(x_1, \cdots, x_N) = \sum_P A(k_{P_1}, \cdots, k_{P_N}) e^{i \sum_{j=1}^N k_{P_i} x_i}$$

YY Chen et al npj Quantum Information 5, 88 (2019)

Working medium: many-body, interacting

- ID Interacting Bose gas: Thermodynamics from coordinate Bethe-ansatz
- Finite-temperature, finite size, box trap
- □ Spectrum from Bethe Ansatz Eqs [M. Gaudin, Phys. Rev. A 4, 386 (1971)]

$$Lk_i = \pi I_i - \sum_{j \neq i} \left(\arctan \frac{k_i - k_j}{c} + \arctan \frac{k_i + k_j}{c} \right)$$

Set of Integer quantum numbers label an energy eigenstate

$$\mathcal{I}_n = \{I_i^{(n)}\} \implies \{k_{n,i}\} \implies \epsilon_n = \sum_i k_{n,i}^2$$

Numerically tractable

YY Chen et al npj Quantum Information 5, 88 (2019)

Working medium: phase diagram

Working medium: Strong coupling

Large interactions/system size L

$$\epsilon_n(c) \approx \frac{\pi^2 \lambda_c}{L^2} \sum_{i=1}^N I_i^{(n)^2} \qquad \lambda_c = 1 - \frac{4(N-1)}{cL} + \frac{12(N-1)^2}{c^2 L^2}$$

Emergent scale invariance

$$\frac{\epsilon_n(c)}{\epsilon_n(c')} = \frac{\lambda_c}{\lambda'_c}$$

At large coupling only, ID-QHE = generalized Otto cycle

$$W = Q_2 - Q_4 = [1 - (\lambda_{c_A} / \lambda_{c_B})]Q_2 \implies \eta = 1 - \frac{\lambda_{c_A}}{\lambda_{c_B}}$$

YY Chen et al npj Quantum Information 5, 88 (2019)

Universality

- Low-temperature: excitations are phonons
- Universal Tomonaga-Luttinger Liquid (TLL)
 Free energy density
 $\mathcal{F} = \mathcal{E}_0 \frac{\pi T^2}{6v_s}$ $N, L \to \infty$ n = N/L

YY Chen et al npj Quantum Information 5, 88 (2019)

Universality

- Low-temperature: excitations are phonons
- Universal Tomonaga-Luttinger Liquid (TLL)

Free energy density
$$\mathcal{F} = \mathcal{E}_0 - \frac{\pi T^2}{6v_s}$$

$$s = -\frac{\partial \mathcal{F}}{\partial T} = \frac{\pi T}{3v_s}$$

Heat exchange

$$Q_{2} = L \int_{s_{B}}^{s_{C}} T ds = \frac{\pi L}{6v_{s}^{B}} (T_{C}^{2} - T_{B}^{2})$$
$$Q_{4} = L \int_{s_{A}}^{s_{D}} T ds = \frac{\pi L}{6v_{s}^{A}} (T_{D}^{2} - T_{A}^{2})$$

YY Chen et al npj Quantum Information 5, 88 (2019)

Working medium: Universality

- Low-temperature: excitations are phonons
- Universal Tomonaga-Luttinger Liquid (TLL)

Isentropes

$$\xi \equiv \frac{T_A}{T_B} = \frac{T_D}{T_C} = \frac{v_s^A}{v_s^B}$$

YY Chen et al npj Quantum Information 5, 88 (2019)

Working medium: Universality

- Low-temperature: excitations are phonons
- Universal Tomonaga-Luttinger Liquid (TLL)

Isentropes

$$\xi \equiv \frac{T_A}{T_B} = \frac{T_D}{T_C} = \frac{v_s^A}{v_s^B}$$

Universal performance

Work output

$$W_{\rm TLL} = \frac{\pi L T_C^2}{6v_s^B} (1 - \xi) \left(1 - \frac{\kappa^2}{\xi^2} \right)$$

 $\kappa = T_A/T_C$

YY Chen et al npj Quantum Information 5, 88 (2019)

Working medium: Universality

- Low-temperature: excitations are phonons
- Universal Tomonaga-Luttinger Liquid (TLL)

Isentropes

$$\xi \equiv \frac{T_A}{T_B} = \frac{T_D}{T_C} = \frac{v_s^A}{v_s^B}$$

Universal performance

Efficiency
$$\eta_{\text{TLL}} = 1 - \frac{v_s^A}{v_s^B} = 1 - \xi$$

YY Chen et al npj Quantum Information 5, 88 (2019)

Work output and efficiency

Max work

$$\xi_c \simeq (2\kappa^2)^{\frac{1}{3}} [1 - (\kappa/2)^{\frac{2}{3}}/3], \quad \kappa = T_A/T_C$$

YY Chen et al npj Quantum Information 5, 88 (2019)

Working medium: phase diagram

Interaction-driven QHE

YY Chen et al npj Quantum Information 5, 88 (2019)

Interaction-driven QHE

Optimal performance at quantum criticality!

YY Chen et al npj Quantum Information 5, 88 (2019)

Many-Particle Quantum Heat Engines

• Harnessing interactions

♦ Harnessing quantum statistics

♦ Harnessing quantum criticality

I) YY Chen, G Watanabe, YC Yu, XW Guan, AdC, npj Quantum Information 5, 88 (2019)

II) G Watanabe, BP Venkatesh, P Talkner, MJ Hwang, AdC, Phys. Rev. Lett. 124, 210603 (2020)

III) Revathy B S, V Mukherjee, U Divakaran, AdC, Phys. Rev. Research 2, 043247 (2020)

Many-Particle Quantum Heat Engines

♦ Harnessing interactions

Harnessing quantum statistics

♦ Harnessing quantum criticality

I) YY Chen, G Watanabe, YC Yu, XW Guan, AdC, npj Quantum Information 5, 88 (2019)

II) G Watanabe, BP Venkatesh, P Talkner, MJ Hwang, AdC, Phys. Rev. Lett. 124, 210603 (2020)

III) Revathy B S, V Mukherjee, U Divakaran, AdC, Phys. Rev. Research 2, 043247 (2020)

Quantum performance over n-cycles

Measure work after 1 cycle Measure work after n cycles

Watanabe, Venakatesh, Talkner, AdC, PRL 118, 050601 (2017)

Quantum performance over many cycles

Efficiency over one cycle does not carry over many cycles

Watanabe, Venakatesh, Talkner, AdC, PRL 118, 050601 (2017)

QHE Ensemble

Watanabe et al. PRL 124, 210603 (2020)

QHE Ensemble

- Each QHE runs Otto cycle
- Couples to work storage

Watanabe et al. PRL 124, 210603 (2020)

Bosonic QHE Ensemble: Work output

- o Each QHE runs Otto cycle
- Couples to work storage

Watanabe et al. PRL 124, 210603 (2020)

Bosonic QHE Ensemble: ergotropy

- Each QHE runs Otto cycle
- Couples to work storage

Watanabe et al. PRL 124, 210603 (2020)

Fermionic QHE Ensemble: don't

Watanabe et al. PRL 124, 210603 (2020)

Many-Particle Quantum Heat Engines

♦ Harnessing interactions

Harnessing quantum statistics

♦ Harnessing quantum criticality

I) YY Chen, G Watanabe, YC Yu, XW Guan, AdC, npj Quantum Information 5, 88 (2019)

II) G Watanabe, BP Venkatesh, P Talkner, MJ Hwang, AdC, Phys. Rev. Lett. 124, 210603 (2020)

III) Revathy B S, V Mukherjee, U Divakaran, AdC, Phys. Rev. Research 2, 043247 (2020)

Many-Particle Quantum Heat Engines

♦ Harnessing interactions

♦ Harnessing quantum statistics

Harnessing quantum criticality

I) YY Chen, G Watanabe, YC Yu, XW Guan, AdC, npj Quantum Information 5, 88 (2019)

II) G Watanabe, BP Venkatesh, P Talkner, MJ Hwang, AdC, Phys. Rev. Lett. 124, 210603 (2020)

III) Revathy B S, V Mukherjee, U Divakaran, AdC, Phys. Rev. Research 2, 043247 (2020)
Kibble-Zurek Mechanism

Domain size: universal power law scaling with quench time

$$\hat{\xi} = \xi(\hat{t}) = \xi_0 \left(\frac{\tau_Q}{\tau_0}\right)^{\frac{\nu}{1+z\nu}}$$

T. W. B. Kibble, JPA 9, 1387 (1976)
T. W. B. Kibble, Phys. Rep. 67, 183 (1980)
W. H. Zurek, Nature (London) 317, 505 (1985)
W. H. Zurek, Acta Phys. Pol. B. 1301 (1993)

KZM in quantum systems: Ising chain

Ising chain is equivalent to ensemble of two-level systems

AT

$$\mathcal{H} = -J\sum_{m=1}^{N} (\sigma_m^z \sigma_{m+1}^z + g\sigma_m^x) = \sum_k E_k (\gamma_k^\dagger \gamma_k - 1/2)$$

Kink number operator: number of kinks = number of excited two-level systems

$$\hat{\mathcal{N}} = \frac{1}{2} \sum_{m=1}^{N} (1 - \sigma_m^z \sigma_{m+1}^z) = \sum_k \gamma_k^{\dagger} \gamma_k$$

Sweep from paramagnet to ferromagnet: mean kink number

$$g(t) = -\frac{t}{\tau_Q} \qquad \langle n \rangle = Nd = N\frac{1}{2\pi}\sqrt{\frac{\hbar}{2J\tau_Q}}$$

2005 Polkovnikov Damski Dziarmaga Zurek, Dorner, Zoller

Adolfo del Campo

Working substance

$$H = \sum_{k} \Psi_{k}^{\dagger} \tilde{H}_{k} \Psi_{k}$$
$$\tilde{H}_{k} = (\lambda + a_{k})\sigma^{z} + b_{k}\sigma^{+} + b_{k}^{*}\sigma^{-}$$

Quantum Critical Point

$$\begin{split} \Delta &= 2\sqrt{(\lambda + a_k)^2 + |b_k|^2} \\ \lim_{\lambda \to \lambda_c} \Delta \big|_{k_c} &= 0 \end{split}$$

Fermionic baths

$$egin{aligned} &
ho(t) = \bigotimes_k
ho_k(t) \ &rac{d
ho_k}{dt} = -i[H_k,
ho_k] + \mathcal{D}_k[
ho_k] \end{aligned}$$

Revathy et al. PRR 2, 043247 (2020)

Finite-time thermodynamics

$$\eta = \frac{\mathcal{Q}_{\rm in} + \mathcal{Q}_{\rm out}}{\mathcal{Q}_{\rm in}} = -\frac{\mathcal{W}}{\mathcal{Q}_{\rm in}} \qquad \qquad \mathcal{P} = -\frac{\mathcal{Q}_{\rm in} + \mathcal{Q}_{\rm out}}{\tau_{\rm total}}$$

Universal when working substance is cooled near its ground state

$$\mathcal{P} = \frac{\mathcal{W}}{\tau_{\text{total}}} \approx \frac{\mathcal{W}_{\infty}}{\tau_2} + R\tau_2^{-\frac{\nu d + x\nu z + 1}{\nu z + 1}}$$

Optimal finite-time thermodynamics at maximum power

$$\begin{aligned} \tau_{\rm opt} &= \left[\frac{R \left(\nu d + x \nu z + 1 \right)}{|\mathcal{W}_{\infty}| \left(\nu z + 1 \right)} \right]^{(\nu z + 1)/[\nu d + (x - 1)\nu z]} \\ \hat{\eta} &= -\frac{\mathcal{W}_{\infty} + \mathcal{E}_{\rm ex,A}(\tau_{\rm opt})}{\mathcal{E}_{\rm B} - \mathcal{E}_{\rm A}^{\rm G} - \mathcal{E}_{\rm ex,A}(\tau_{\rm opt})} \end{aligned}$$

Revathy et al. PRR 2, 043247 (2020)

1d Quantum Ising chain

Revathy et al. PRR 2, 043247 (2020)

Adolfo del Campo: adolfo.delcampo@uni.lu

1d Quantum Ising chain

Revathy et al. PRR 2, 043247 (2020)

Adolfo del Campo: adolfo.delcampo@uni.lu

Many-Particle Quantum Heat Engines

I) YY Chen, G Watanabe, YC Yu, XW Guan, AdC, npj Quantum Information 5, 88 (2019)

II) G Watanabe, BP Venkatesh, P Talkner, MJ Hwang, AdC, Phys. Rev. Lett. 124, 210603 (2020)

III) Revathy B S, V Mukherjee, U Divakaran, AdC, Phys. Rev. Research 2, 043247 (2020)

Adolfo del Campo: adolfo.delcampo@uni.lu