Symmetry shapes thermodynamics in macroscopic quantum systems

Ariane Soret 12

¹ Quandela ² University of Luxembourg

Carnot Workshop on Quantum Thermodynamics and Open Quantum Systems

25-27 November 2024, Dijon, France

V. Cavina, A. Soret, T. Aslyamov, K. Ptaszyński, M. Esposito, Phys. Rev. Lett. 133, 130401 (2024)

Vasco Cavina

(SNS, Pisa)

Timur Aslyamov

(Uni. Luxembourg)

Krzysztof Ptaszyński

Physics,

(Institute of Molecular

and Uni. Luxembourg)

Polish Academy of Sciences

Massimiliano Esposito

(Uni. Luxembourg)

<u>Outline</u>

• Introduction

- Symmetries in quantum systems
- Entropy decomposition
- Permutation group
- Quantum phase transition in the transverse Curie-Weiss model

Symmetries in physics...

- Out of equilibrium: stochastic energetics, dynamical phase transitions,...
- At equilibrium: entropy scalings, ground state properties...
- Influences thermalization
- Can be exploited to optimize quantum computing, numerics...
- •

Symmetry and thermodynamics in quantum systems? Quantum phase transitions?

Classical Curie-Weiss model

N interacting spins in magnetic field

$$H = -\frac{J}{N} \sum_{i < j} m_i m_j - \mu B \sum_i m_i$$

Invariant under permutation of particles:

$$\pi[H(m_1, m_2, ..., m_N)] = H(m_{\pi(1)}, m_{\pi(2)}, ..., m_{\pi(N)}) = H(m_1, m_2, ..., m_N)$$

$$H(\vec{m}) = H(\vec{m}(\mu_1, \mu_2)) = \omega(\mu_1 - \mu_2) + \frac{t}{N}(\mu_1 - \mu_2)^2$$
Occupation numbers

Rate function and phase transition

Quantum case ?

$$\hat{H} = -\frac{J}{N} \sum_{i < j} \hat{\sigma}_x^{(i)} \hat{\sigma}_x^{(j)} - \mu B \sum_i \hat{\sigma}_z^{(i)}$$

- Choice of basis: $|v
 angle=|v_1
 angle\otimes|v_2
 angle...\otimes|v_N
 angle$ with $|v_j
 angle=|0
 angle,|1
 angle$
- Permutation: $\pi |v\rangle = |v_{\pi(1)}\rangle \otimes |v_{\pi(2)}\rangle ... \otimes |v_{\pi(N)}\rangle$

Label states with occupation number?

Phase transition?

<u>Outline</u>

- Introduction
- Symmetries in quantum systems
- Entropy decomposition
- Permutation group
- Quantum phase transition in the transverse Curie-Weiss model

Symmetry group

- Quantum system : defined in Hilbert space ${\cal H}$
- Characterised by density matrix $\,
 ho$
- Symmetry : associated with a unitary transformation $\in U(N)$
- ρ satisfies a symmetry $g \in U(N)$ if $g\rho g^{-1} = \rho$

The set of symmetries of ρ is a group (g,g' symmetries $\rightarrow gg$ ' symmetry, ...) called the **symmetry group** G:

$$G \subseteq U(N) ; \forall g \in G \quad g\rho g^{-1} = \rho$$

Group representations

In general: no common eigenbasis for all the $\ g\in G$

BUT: There are subspaces of the Hilbert \mathcal{H} space invariant under the action of G:

If the representations cannot be decomposed further, they are called irreducible.

Form of the density matrix of a system symmetric under G

What happens if ρ commutes with a full group?

$$\forall g \in G \qquad g\rho g^{-1} = \rho \qquad [g,\rho] = 0$$

Form of the density matrix of a system symmetric under G

ho block diagonal and proportional to the identity in every block (Schur's lemma):

$$\rho = \begin{pmatrix} V_1^{\lambda} & V_2^{\lambda} & V_1^{\lambda'} \\ d_{1,1} & 0 & c & 0 & 0 & 0 \\ 0 & d_{1,1} & 0 & c & 0 & 0 & 0 \\ \hline c^* & 0 & d_{1,2} & 0 & 0 & 0 & 0 \\ \hline 0 & c^* & 0 & d_{1,2} & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & d_{2,1} & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & d_{2,1} \end{pmatrix}$$

<u>Outline</u>

- Introduction
- Symmetries in quantum systems
- Entropy decomposition
- Permutation group
- Quantum phase transition in the transverse Curie-Weiss model

Von Neumann entropy

<u>Summary</u>

- Group representation theory gives natural basis to study a symmetric system
- Universal decomposition of Von Neumann entropy

Wich entropic term dominates? Phase transitions?

<u>Outline</u>

- Introduction
- Symmetries in quantum systems
- Entropy decomposition
- Permutation group
- Quantum phase transition in the transverse Curie-Weiss model

Permutation group S_N

- Acts on *N* ordered objects by permuting them
- $\bullet \quad N! \quad \text{elements in the group} \\$
- Acts on the tensor product of Hilbert spaces:

$$\pi \left[|v_1\rangle \otimes |v_2\rangle \dots \otimes |v_N\rangle \right] = |v_{\pi(1)}\rangle \otimes |v_{\pi(2)}\rangle \dots \otimes |v_{\pi(N)}\rangle$$

In what follows: consider a system of *N* particles of *d* levels

<u>Irreducible representations of the permutation group?</u>

Example: 3 identical 2 level systems; dim \mathcal{H} = 8 $\mathcal{H} = M_{(3,0)} \oplus M_{(2,1)} \oplus M_{(1,2)} \oplus M_{(0,3)}$

INVARIANT SUBSPACE	DIM	OCCUPATION NUMBERS	
$ 000\rangle$	1	(3,0)	
$\frac{ 100\rangle + 010\rangle + 001\rangle}{\sqrt{3}}$	1	(2,1)	
$a\frac{ 001\rangle - 100\rangle}{\sqrt{2}} + b\frac{ 001\rangle - 010\rangle}{\sqrt{2}}$	2	(2,1)	
$\frac{ 110\rangle + 101\rangle + 011\rangle}{\sqrt{3}}$	1	(1,2)	
$a\frac{ 110\rangle - 011\rangle}{\sqrt{2}} + b\frac{ 110\rangle - 101\rangle}{\sqrt{2}}$	2	(1,2)	
$\sqrt{2}$ $\sqrt{2}$ $ 111\rangle$	1	(0,3)	

(You may ignore the next three slides...)

Irreducible representations of the permutation group

General case: N particles of d levels

- The irreducibles of S_N are labelled by **Young tableaux:** tables of *N* boxes with decreasing number of rows.
- Number of rows = number of levels *d*
- λ = partition of $N \rightarrow$ shape

EXAMPLE: some irreducibles appearing in 9 3-level systems

Connection between tableaux and the Hilbert space

Back to 3 2-level systems

Back to 3 identical 2 level systems			Irreduci	ibles λ_1	λ_2
$\mathcal{H} = M_{(3,0)} \oplus M_{(2,1)} \oplus M_{(1,2)} \oplus M_{(0,3)}$			$\mathrm{dim}\lambda_1 = 1$	$\mathrm{dim}\lambda_2 = 2$	
INVARIANT SUBSPACE	DIM	OCCUPATION NUMBERS		<u>Young's rule</u>	
	1	(3,0)		$M_{(3,0)} = S_{(3,0)}^{\lambda_1} -$	▶ 0 0 0
$\frac{ 100\rangle + 010\rangle + 001\rangle}{\sqrt{2}}$	1	(2,1)			• 0 0 1
$a\frac{ 001\rangle - 100\rangle}{\sqrt{2}} + b\frac{ 001\rangle - 010\rangle}{\sqrt{2}}$	2	(2,1)		$\int M_{(2,1)} = S_{(2,1)}^{\lambda_1} \in$	$ ightarrow S_{(2,1)}^{\lambda_2} egin{array}{c c} 0 & 0 \\ 1 \end{array} $
$\frac{ 110\rangle + 101\rangle + 011\rangle}{\sqrt{3}}$	1	(1,2)		$M_{(12)} = S_{(12)}^{\lambda_1} \oplus$	$\begin{array}{c c} \bullet & 0 & 1 & 1 \\ \hline & S_{(1,2)}^{\lambda_2} & \bullet & 1 \end{array}$
$a\frac{ 110\rangle - 011\rangle}{\sqrt{2}} + b\frac{ 110\rangle - 101\rangle}{\sqrt{2}}$	2	(1,2)			(1,2) 0 1
$ 111\rangle$	1	(0,3)		$M_{(0,3)} = S_{(0,3)}^{\lambda_1} -$	

Take home message

- We can map the product basis to the basis of the irreducibles
- We actually don't need to know the details of the mapping

Equilibrium free energy

$$e^{-\beta\hat{H}} = \sum_{\lambda} e^{-\beta\hat{H}_{\lambda}\otimes\mathbf{I}_{\lambda}} \implies F \equiv -\frac{1}{\beta}\log\operatorname{Tr}[e^{-\beta\hat{H}}] = -\frac{1}{\beta}\log\left\{\sum_{\lambda}\dim\lambda\operatorname{Tr}\left[e^{-\beta\hat{H}_{\lambda}}\right]\right\}$$

Intensive free energy
in subspace $x \equiv \frac{X}{N}$: $e(x) \equiv -\lim_{N \to \infty} \frac{1}{\beta N}\log\left\{\operatorname{Tr}\left[e^{-\beta\hat{H}(x)}\right]\right\} = \lim_{N \to \infty} \frac{E_{x}^{0}}{N} \quad \text{energy in block}$
$$\frac{\operatorname{Large N \operatorname{limit}}}{\prod_{N \to \infty} \frac{F}{N}} = -\lim_{N \to \infty} \frac{1}{\beta N}\ln\int e^{-N\beta f(x)}dx$$
$$f(x) \equiv e(x) - \beta^{-1}s(x)$$

Energy rate function, given by ground state energy in the irreducible subspaces

Minimization

Free energy rate function: $\lim_{N \to \infty} \frac{F}{N} = -\lim_{N \to \infty} \frac{1}{\beta N} \ln \int e^{-N\beta f(\boldsymbol{x})} d\boldsymbol{x} = f(\boldsymbol{x}^*)$ $\boldsymbol{x}^* = \arg \min_{\boldsymbol{x}} f(\boldsymbol{x})$

$$p_{\lambda} = \dim \lambda \operatorname{Tr} \left[e^{-\beta(\tilde{H}_{\lambda} - F)} \right] \quad \Longrightarrow \quad \lim_{N \to \infty} \frac{1}{N} \log p_{\lambda} = -\beta \left[f(\boldsymbol{x}) - f(\boldsymbol{x}^*) \right]$$

$$\lim_{N \to \infty} \frac{S}{N} = s(\boldsymbol{x^*})$$

Energy: $\lim_{N \to \infty} \frac{E}{N} = \lim_{N \to \infty} \frac{\operatorname{Tr} \left[\hat{H} e^{-\beta(\hat{H} - F)} \right]}{N} = e(\boldsymbol{x}^*)$

<u>Outline</u>

- Introduction
- Symmetries in quantum systems
- Entropy decomposition
- Permutation group
- Quantum phase transition in the transverse Curie-Weiss model

Quantum transverse Curie-Weiss model

T. Jorg et al, EPL 89, 40004 (2010) L. Chayes et al, J. Stat. Phys. 133, 131 (2008).

$$\hat{H} = -\frac{J}{N} \sum_{i < j} \hat{\sigma}_x^{(i)} \hat{\sigma}_x^{(j)} - \mu B \sum_i \hat{\sigma}_z^{(i)}$$

Irreducibles labelled by $\, oldsymbol{\lambda} = (\lambda_1, \lambda_2) \,$

Rescaled total angular momentum (or magnetization): *l*

$$s(l) = -\left(\frac{1}{2} - l\right)\log\left(\frac{1}{2} - l\right) - \left(\frac{1}{2} + l\right)\log\left(\frac{1}{2} + l\right)$$

$$e(l) = \begin{cases} -\omega l & \text{for } l \leq \frac{\omega}{2\alpha} ,\\ -l^2 J - \frac{\omega^2}{2J} & \text{for } l > \frac{\omega}{2\alpha} . \end{cases}$$

Quantum phase transition

B > 0

<u>Conclusions</u>

- Group representation theory provides the natural basis for the Hilbert space
- Universal decomposition of entropy
- For the permutation group: entropy and free energy satisfy large deviation principles
- The free energy rate function shows a competition between entropic (group theory) and energetic rate functions
- Powerful tool for the study of quantum phase transitions

Perspectives

- Physical meaning of the labelling λ for d > 2?
- Phase transitions with other groups than permutation group?
- Open systems?
- Out of equilibrium?

Appendices

Limit shape (simple version of Vershik-Kerov theorem)

S. V. Kerov, A. M. Vershik, SIAM J. on Algebraic Discrete Methods 7, 116 (1986)

