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Symmetries in physics...

● Out of equilibrium: stochastic energetics, dynamical phase transitions,…

● At equilibrium: entropy scalings, ground state properties…

● Influences thermalization

●  Can be exploited to optimize quantum computing, numerics…

● ...

Symmetry and thermodynamics in quantum systems? Quantum phase transitions?



  

Classical Curie-Weiss model

Invariant under permutation of particles:

N interacting spins in magnetic field

Occupation numbers



  

Equilibrium partition function:

Density

Energetic contribution Entropic contribution

Rate function and phase transition

Macroscopic limit: 

Phase transition:



  

Quantum case ?

• Choice of basis:

• Permutation:

with

Label states with occupation number? 

Phase transition?
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Symmetry group

● Quantum system : defined in Hilbert space

● Characterised by density matrix 

● Symmetry : associated with a unitary transformation 

●      satisfies a symmetry                     if    

The set of symmetries of      is a group (g,g’ symmetries → gg’ symmetry, …)
called the symmetry group G:



  

In general: no common eigenbasis for all the 

BUT: There are subspaces of the Hilbert      space invariant under the action of G:

REPRESENTATIONS

If the representations cannot be decomposed further, they are called irreducible. 

Group representations



  

What happens if      commutes with a full group?

Common eigenbasis

Form of the density matrix of a system symmetric under G



  

Common invariant subspaces

  block diagonal and proportional to the identity in every block (Schur’s lemma): 

Form of the density matrix of a system symmetric under G
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Von Neumann entropy

Shannon entropy

Depends on group bounded



  

● Group representation theory gives natural basis to study a 
symmetric system

● Universal decomposition of Von Neumann entropy

Summary

Wich entropic term dominates? Phase transitions?
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Permutation group         

Example  

1 2

3

Acts on N ordered objects by 
permuting them  

elements in the group

Acts on the tensor product of        
Hilbert spaces:



  

In what follows: consider a system of N particles of d levels



  

Irreducible representations of the permutation group?

Example: 3 identical 2 level systems; dim      = 8 

INVARIANT SUBSPACE        DIM        OCCUPATION
            NUMBERS

1

1

2

1

2

1

(3,0)

(2,1)

(2,1)

(1,2)

(1,2)

(0,3)



  

Irreducible representations of the permutation group

(You may ignore the next three slides...)

• The irreducibles of        are labelled by Young tableaux: tables of N boxes with 
decreasing number of rows.

• Number of rows = number of levels d

•      = partition of N → shape

EXAMPLE: some irreducibles appearing in 9 3-level systems

General case: N particles of d levels

= (5,3,1) = (5,4,0) = (4,4,1)



  

Connection between tableaux and the Hilbert space

Fill the tableaux: Vector (tabloid): 

Vector space (permutation module)
generated by:

Subspace of fixed 
occupation number

Young’s rule: 

isomorphism

Back to 3 2-level systems



  1 1 1

1 10

0 10

0 00

0
1

1

0
1

0

INVARIANT SUBSPACE        DIM        OCCUPATION
            NUMBERS

1

1

2

1

2

1

(3,0)

(2,1)

(2,1)

(1,2)

(1,2)

(0,3)

Back to 3 identical 2 level systems Irreducibles

Young’s rule



  

Take home message

We can map the product basis to the basis of the irreducibles

We actually don’t need to know the details of the mapping

Importantly: 
Kotska number

Occupation numbers



  

~ N 

entropy rate function depending only on group properties

Large N limit

Von Neumann entropy: large N limit

Hook length formula:



  

Equilibrium free energy

Large N limit 

Energy rate function, given by ground state energy in the irreducible subspaces

ground state
energy in block

Intensive free energy  

in subspace               :



  

Free energy rate function: 

Minimization

Entropy: Energy: 
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Quantum transverse Curie-Weiss model

Irreducibles labelled by 

Rescaled total angular momentum
(or magnetization):

T. Jorg et al, EPL 89, 40004 (2010)
L. Chayes et al, J. Stat. Phys. 133, 131 (2008).



  

Quantum phase transition

J Ordered phase

Paramagnetic phase



  

Conclusions

● Group representation theory provides the natural basis for the Hilbert space
● Universal decomposition of entropy
● For the permutation group: entropy and free energy satisfy large deviation principles
● The free energy rate function shows a competition between entropic (group theory) and 

energetic rate functions
● Powerful tool for the study of quantum phase transitions  

Perspectives

● Physical meaning of the labelling       for d > 2 ? 
● Phase transitions with other groups than permutation group?
● Open systems? 
● Out of equilibrium?



  

Appendices



  

Limit shape (simple version of Vershik-Kerov theorem)

Vershik-Kerov (finite d case)

S. V. Kerov, A. M. Vershik, SIAM J. on Algebraic Discrete Methods 7, 116 (1986)

Limit shape:
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