Table of Contents

- Basics about Lie Groups
- Bilinear Control Systems Basic Properties
 - The Lifted System
 - Two Fundamental Results
- Bilinear Control Systems Advanced Results
 - Induced Systems
 - A few "Simple" Controllability Criteria
 - Finite Time Control
- Applications to Quantum Control
 - Basic Notation
 - Closed Quantum Systems
 - Open Quantum Systems

Definition (Lie Group)

A *Lie group G* is a smooth (finite dimensional) manifold equipped with a smooth operation $*: G \times G \to G$ such that (G, *) is group.

Definition (Lie Group)

A *Lie group G* is a smooth (finite dimensional) manifold equipped with a smooth operation $*: G \times G \to G$ such that (G, *) is group.

Prime examples.

- ullet ($\mathbb{R}^n,+$), ($\mathbb{C}^n,+$) and ($\mathbb{R}\setminus\{0\},\cdot$) and ($\mathbb{C}\setminus\{0\},\cdot$)
- $GL_n(\mathbb{R})$, $SL_n(\mathbb{R})$ and $GL_n(\mathbb{C})$, $SL_n(\mathbb{C})$
- $O_n(\mathbb{R})$, $SO_n(\mathbb{R})$ and $O_n(\mathbb{C})$, $SO_n(\mathbb{C})$
- U_n and SU_n
- UPT $_n(\mathbb{R})$ and UPT $_n(\mathbb{C})$

Recall. Every open subset of \mathbb{R}^n , \mathbb{C}^n or, more general, of any finite dimensional real/complex vector space is a smooth manifold.

Dirr (Würzburg) Winter School, Dijon 2025

Definition (Lie Group)

A *Lie group G* is a smooth (finite dimensional) manifold equipped with a smooth operation $*: G \times G \to G$ such that (G, *) is group.

Two more advanced examples.

- Let M be a compact Riemannian manifold and let Diff(M) be the set of all smooth diffeomorphisms of M. Then Diff(M) has a natural infinite dimensional (Fréchet) Lie group structure (cf. Neeb, Towards a Lie theory of locally convex groups, 2006).
- Moreover, let I(M) ⊂ Diff(M) be the subgroup of all isometry of M. Then I(M) carries
 the structure of a finite dimensional Lie group (Myers & Steenrod, The group of isometries of a Riemannian manifold, 1939).

Dirr (Würzburg) Winter School, Dijon 2025

Two more advanced examples.

- Let M be a compact Riemannian manifold and let Diff(M) be the set of all smooth diffeomorphisms of M. Then Diff(M) has a natural infinite dimensional (Fréchet) Lie group structure (cf. Neeb, *Towards a Lie theory of locally convex groups*, 2006).
- Moreover, let I(M) ⊂ Diff(M) be the subgroup of all isometry of M. Then I(M) carries
 the structure of a finite dimensional Lie group (Myers & Steenrod, The group of isometries of a Riemannian manifold, 1939).

Simplification. In this lecture (part I) we want to restrict our considerations to so-called *linear Lie groups*, i.e. to *Lie subgroups* of $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$ or, more general, GL(V), where V is a finite dimensional real/complex vector space.

Dirr (Würzburg) Winter School, Dijon 2025

Two more advanced examples.

- Let M be a compact Riemannian manifold and let Diff(M) be the set of all smooth diffeomorphisms of M. Then Diff(M) has a natural infinite dimensional (Fréchet) Lie group structure (cf. Neeb, *Towards a Lie theory of locally convex groups*, 2006).
- Moreover, let I(M) ⊂ Diff(M) be the subgroup of all isometry of M. Then I(M) carries
 the structure of a finite dimensional Lie group (Myers & Steenrod, The group of isometries of a Riemannian manifold, 1939).

Simplification. In this lecture (part I) we want to restrict our considerations to so-called *linear Lie groups*, i.e. to *Lie subgroups* of $GL_n(\mathbb{R})$, $GL_n(\mathbb{C})$ or, more general, GL(V), where V is a finite dimensional real/complex vector space.

Question. How massive is this restriction within the class of all finite dim. Lie groups?

Dirr (Würzburg) Winter School, Dijon 2025

Problem. How massive is this restriction within the class of all finite dim. Lie groups?

Answer.

- It is definitely a restriction in the sense that not all finite dimensional Lie groups can be represented as Lie subgroups of some GL(V) (counter-example: Double cover of $SL_2(\mathbb{R})$, cf. Knapp, Chap. VI, Sec. 3)
- However, on the "infinitesimal level" it does not yield any restriction due to Ado's theorem.

Dirr (Würzburg) Winter School, Dijon 2025

Problem. How massive is this restriction within the class of all finite dim. Lie groups?

Answer.

- It is definitely a restriction in the sense that not all finite dimensional Lie groups can be represented as *Lie subgroups* of some GL(V) (counter-example: Double cover of $SL_2(\mathbb{R})$, cf. Knapp, Chap. VI, Sec. 3)
- However, on the "infinitesimal level" it does not yield any restriction due to Ado's theorem.

Theorem (Ado, 1935)

Every finite dimensional real/complex Lie algebra can be represented as a Lie sub-algebra of $\mathfrak{gl}(V)$ for some finite dimensional real/complex vector and hence as a Lie subalgebra of $\mathfrak{gl}_n(\mathbb{R})$ or $\mathfrak{gl}_n(\mathbb{C})$ for some $n \in \mathbb{N}$.

Dirr (Würzburg) Winter School, Dijon 2025

Definition (Lie subgroup)

A Lie subgroup of GL(V) is a subgroup of GL(V) which carries the structure of an immersed submanifold of GL(V).

Examples.

- $SL_n(\mathbb{R})$, $O_n(\mathbb{R})$, $SO_n(\mathbb{R})$, $UPT_n(\mathbb{R})$ are Lie subgroups of $GL_n(\mathbb{R})$
- $SL_n(\mathbb{C})$, U_n , SU_n , $UPT_n(\mathbb{C})$ are Lie subgroups of $GL_n(\mathbb{C})$

Dirr (Würzburg) Winter School, Dijon 2025

Definition (Lie subgroup)

A Lie subgroup of GL(V) is a subgroup of GL(V) which carries the structure of an immersed submanifold of GL(V).

Examples.

- $SL_n(\mathbb{R})$, $O_n(\mathbb{R})$, $SO_n(\mathbb{R})$, $UPT_n(\mathbb{R})$ are Lie subgroups of $GL_n(\mathbb{R})$
- $SL_n(\mathbb{C})$, U_n , SU_n , $UPT_n(\mathbb{C})$ are Lie subgroups of $GL_n(\mathbb{C})$
- Let α be irrational and consider the following subgroup of $GL_4(\mathbb{R})$:

$$\textit{W}_{\alpha} := \left\{ \left(\begin{smallmatrix} \cos t & \sin t & 0 & 0 \\ -\sin t & \cos t & 0 & 0 \\ 0 & 0 & \cos(\alpha t) & \sin(\alpha t) \\ 0 & 0 & -\sin(\alpha t) & \cos(\alpha t) \end{smallmatrix} \right) \middle| t \in \mathbb{R} \right\} \subset \left\{ \left(\begin{smallmatrix} \Theta & 0_2 \\ 0_2 & \Omega \end{smallmatrix} \right) \middle| \Theta, \Omega \in \textit{SO}(2) \right\} =: \textit{T}^2 \subset \operatorname{GL}_4(\mathbb{R}) \,.$$

 W_{α} is a 1-dimensional immersed submanifold and thus a Lie subgroup of $GL_4(\mathbb{R})$.

Dirr (Würzburg) Winter School, Dijon 2025

Definition (Lie algebra)

A (finite dimensional) real/complex Lie algebra $\mathfrak g$ is a real/complex (finite dimensional) vector space equipped with a bilinear, skew-symmetric operation $(A,B)\mapsto [A,B]$ which satisfies the Jacobi-identity, i.e.

- $[\lambda A + C, B] = \lambda [A, B] + [C, B]$ for all $A, B, C \in \mathfrak{g}$. $\lambda \in \mathbb{R}$ (or $\lambda \in \mathbb{C}$)
- [A, B] = -[B, A] for all $A, B \in \mathfrak{g}$.
- [A, [B, C]] = [[A, B], C] + [B, [A, C]] for all $A, B, C \in \mathfrak{g}$.

Dirr (Würzburg) Winter School, Dijon 2025

Definition (Lie algebra)

A (finite dimensional) real/complex Lie algebra g is a real/complex (finite dimensional) vector space equipped with a bilinear, skew-symmetric operation $(A, B) \mapsto [A, B]$ which satisfies the Jacobi-identity, i.e.

- $[\lambda A + C, B] = \lambda [A, B] + [C, B]$ for all $A, B, C \in \mathfrak{g}$. $\lambda \in \mathbb{R}$ (or $\lambda \in \mathbb{C}$)
- [A, B] = -[B, A] for all $A, B \in \mathfrak{g}$.
- [A, [B, C]] = [[A, B], C] + [B, [A, C]] for all $A, B, C \in \mathfrak{g}$.

Examples.

- $\begin{array}{l} \bullet \ \mathfrak{gl}_n(\mathbb{R}) = \mathbb{R}^{n \times n}, \, \mathfrak{gl}_n(\mathbb{C}) = \mathbb{R}^{n \times n} \\ \bullet \ \mathfrak{sl}_n(\mathbb{R}) = ..., \, \mathfrak{sl}_n(\mathbb{C}) = ... \end{array} \right\} \text{ equipped with the commutator } [A, B] := AB BA.$
- $\mathfrak{so}_n(\mathbb{R}) = ..., \mathfrak{u}_n = ..., \mathfrak{su}_n = ...$
- \mathbb{R}^n or \mathbb{C}^n equipped with [A, B] = 0 (Abelian Lie algebra).

Dirr (Würzburg)

Definition (Lie algebra)

A (finite dimensional) real/complex Lie algebra $\mathfrak g$ is a real/complex (finite dimensional) vector space equipped with a bilinear, skew-symmetric operation $(A,B)\mapsto [A,B]$ which satisfies the Jacobi-identity, i.e.

- $[\lambda A + C, B] = \lambda [A, B] + [C, B]$ for all $A, B, C \in \mathfrak{g}$. $\lambda \in \mathbb{R}$ (or $\lambda \in \mathbb{C}$)
- [A, B] = -[B, A] for all $A, B \in \mathfrak{g}$.
- [A, [B, C]] = [[A, B], C] + [B, [A, C]] for all $A, B, C \in \mathfrak{g}$.

In what follows we focus on real Lie algebras!

Dirr (Würzburg) Winter School, Dijon 2025

Question: What's the relation between Lie algebras and Lie groups?

Question: What's the relation between Lie algebras and Lie groups?

Lie's Theorem

Let *G* be a finite dimensional Lie group.

- (a) The tangent space T_IG of G at the identity I carries a natural Lie algebra structure.
- (b) The tangent space T_IH of every Lie subgroup of $H \subset G$ is a Lie subalgebra of T_IG .
- (c) Conversely, to every Lie subalgebra $\mathfrak h$ of T_IG there is a unique path-connected Lie subgroup with Lie algebra $\mathfrak h$.

Question: What's the relation between Lie algebras and Lie groups?

Lie's Theorem

Let *G* be a finite dimensional Lie group.

- (a) The tangent space T_IG of G at the identity I carries a natural Lie algebra structure.
- (b) The tangent space T_IH of every Lie subgroup of $H\subset G$ is a Lie subalgebra of T_IG .
- (c) Conversely, to every Lie subalgebra $\mathfrak h$ of T_IG there is a unique path-connected Lie subgroup with Lie algebra $\mathfrak h$.

Proof sketch:

(a) & (b) Use the following facts (see also "Running Example"): $T_IH \subset T_IG$ and

 $T_IG \cong \text{set of all right-invariant vector fields on } G$

= Lie subalgebra of the Lie algebra of all smooth vector fields on G

(c) Apply the Frobenius' theorem to the (right invariant) "distribution" generated by h.

Running Example: $SO_n(\mathbb{R})$

• Subgroup of $GL_n(\mathbb{R})$: \checkmark

Running Example: $SO_n(\mathbb{R})$

- Subgroup of $GL_n(\mathbb{R})$: \checkmark
- Submanifold:

Dirr (Würzburg) Winter School, Dijon 2025

Running Example: $SO_n(\mathbb{R})$

- Subgroup of $GL_n(\mathbb{R})$: \checkmark
- Submanifold: Consider the map

$$\Phi: \mathbb{R}^{n \times n} \to \operatorname{Sym}_n(\mathbb{R}), \quad \Phi(X) := X^\top X - I_n.$$

Obviously, $O_n(\mathbb{R}) = \Phi^{-1}(0_n)$. Thus, the regular value theorem (RVT) – if applicable – would imply that $O_n(\mathbb{R})$ is a submanifold of $\mathrm{GL}_n(\mathbb{R}) \subset \mathbb{R}^{n \times n}$. Therefore, let's investigate whether $0_n \in \mathrm{Sym}_n(\mathbb{R})$ is a regular value of Φ :

- Derivative of Φ : $D\Phi(X)H = H^{\top}X + X^{\top}H$, $X, H \in \mathbb{R}^{n \times n}$
- Let $X \in \Phi^{-1}(0_n)$ and $S \in \operatorname{Sym}_n(\mathbb{R})$. Choose $H := \frac{1}{2}XS$ then

$$D\Phi(X)H = \frac{1}{2}(XS)^{\top}X + \frac{1}{2}X^{\top}(XS) = \frac{1}{2}SX^{\top}X + \frac{1}{2}X^{\top}XS = S,$$

8/41

i.e. $\mathbb{D}\Phi(X)$ is surjective for all $X \in \Phi^{-1}(0_n)$ and thus RVT applies.

- Hence $O_n(\mathbb{R})$ and $SO_n(\mathbb{R}) = O_n(\mathbb{R}) \cap GL_n^+(\mathbb{R})$ are submanifolds of $GL_n(\mathbb{R}) \subset \mathbb{R}^{n \times n}$.
- Moreover, $O_n(\mathbb{R})$ and $SO_N(\mathbb{R})$ are closed and bounded and thus compact.

Running Example: $SO_n(\mathbb{R})$

- Subgroup of $GL_n(\mathbb{R})$: \checkmark
- Submanifold: √
- Tangent space at the identity I_n:

Dirr (Würzburg) Winter School, Dijon 2025

Running Example: $SO_n(\mathbb{R})$

- Subgroup of $GL_n(\mathbb{R})$: \checkmark
- Submanifold: √
- Tangent space at the identity I_n: By RVT we know

$$\mathrm{T}_{\mathrm{I}_n}\mathrm{O}_n(\mathbb{R}) = \ker \mathrm{D}\Phi(\mathrm{I}_n) = \{H \in \mathbb{R}^{n \times n} \mid H^\top + H = 0\} = \mathfrak{so}_n(\mathbb{R})\,.$$

Dirr (Würzburg) Winter School, Dijon 2025

Running Example: $SO_n(\mathbb{R})$

- Subgroup of $GL_n(\mathbb{R})$: \checkmark
- Submanifold: √
- Tangent space at the identity I_n: √
- Lie algebra structure:

Dirr (Würzburg) Winter School, Dijon 2025

Running Example: $SO_n(\mathbb{R})$

- Subgroup of $GL_n(\mathbb{R})$: \checkmark
- Submanifold: √
- Tangent space at the identity I_n: √
- Lie algebra structure: Obviously, $\mathfrak{so}_n(\mathbb{R})$ is a Lie subalgebra of $\mathfrak{gl}_n(\mathbb{R})$. But can we argue a bit more general as in Lie's theorem?

Dirr (Würzburg) Winter School, Dijon 2025

Running Example: $SO_n(\mathbb{R})$

- Subgroup of $GL_n(\mathbb{R})$: \checkmark
- Submanifold: √
- Tangent space at the identity I_n: √
- Lie algebra structure: Consider the right "translation" r_{Θ} on $SO_n(\mathbb{R})$ by $\Theta \in SO_n(\mathbb{R})$, i.e.

$$r_{\Theta}(X) := X\Theta$$
.

Obviously, $r_{\Theta} : SO_n(\mathbb{R}) \to SO_n(\mathbb{R})$ yields a diffeomorphism which maps I to Θ . Hence

$$\mathrm{D}r_{\Theta}(\mathrm{I}_n):\mathrm{T}_{\mathrm{I}_n}\mathrm{SO}_n(\mathbb{R})\to\mathrm{T}_{\Theta}\mathrm{SO}_n(\mathbb{R})$$
.

This allows us to define so-called right-invariant vector fields on $SO_n(\mathbb{R})$ via

$$\xi_{\mathcal{A}}(\Theta) := \mathrm{D} r_{\Theta}(\mathrm{I}) \mathcal{A} \quad \text{with} \quad \mathcal{A} \in \mathcal{T}_{\mathrm{I}_n} \mathrm{SO}_n(\mathbb{R}) \,. \tag{*}$$

8/41

To make (*) more explicit we compute the derivative $Dr_{\Theta}(I_n)A = A\Theta$. Hence we obtain

$$\xi_A(\Theta) := A\Theta$$
.

Running Example: $SO_n(\mathbb{R})$

- Subgroup of $GL_n(\mathbb{R})$: \checkmark
- Submanifold: √
- Tangent space at the identity I_n: √
- Lie algebra structure: This allows us to define so-called right-invariant vector fields on $SO_n(\mathbb{R})$ via

$$\xi_{\mathcal{A}}(\Theta) := \mathrm{D} r_{\Theta}(\mathrm{I}_n) \mathcal{A} \quad \text{with} \quad \mathcal{A} \in \mathcal{T}_{\mathrm{I}} \mathrm{SO}_n(\mathbb{R}) \,. \tag{*}$$

8/41

To make (*) more explicit we compute the derivative $Dr_{\Theta}(I_n)A = A\Theta$. Hence we obtain

$$\xi_{\mathcal{A}}(\Theta) := \mathcal{A}\Theta$$
.

Finally, let us compute the Lie derivative of two right-invariant vector fields:

$$L_{\xi_B}\xi_A(\Theta) := D\xi_A(\Theta)\xi_B(\Theta) - D\xi_B(\Theta)\xi_A(\Theta) = AB\Theta - BA\Theta = [AB - BA]\Theta$$

Since it is well known that $L_{\xi_B}\xi_A$ is again a vector field on the respective submanifold (here $SO_n(\mathbb{R})$) we conclude that $[AB-BA]\in T_{I_n}SO_n(\mathbb{R})$. i.e. $T_{I_n}SO_n(\mathbb{R})$ is a Lie subalgebra of $\mathfrak{gl}_n(\mathbb{R})$.

Running Example: $SO_n(\mathbb{R})$

- Subgroup of $GL_n(\mathbb{R})$: \checkmark
- Submanifold: √
- Tangent space at the identity I_n: √
- Lie algebra structure:
 √

For now end of running example!

Dirr (Würzburg) Winter School, Dijon 2025

Concluding remarks and useful results.

Theorem

Let G be an arbitrary Lie subgroup of $\mathrm{GL}_n(\mathbb{R})$ with Lie subalgebra $\mathfrak{g}:=\mathrm{T}_I G.$ Then one has the following identities

- (a) Trotter formula: $\lim_{n\to\infty} \left(e^{A/n}e^{B/n}\right)^n = e^{A+B}$ for all $A, B \in \mathfrak{g}$.
- (b) Commutator formula: $\lim_{n\to\infty} \left(e^{A/n} e^{B/n} e^{-A/n} e^{-B/n} \right)^{n^2} = [A, B]$ for all $A, B \in \mathfrak{g}$.

Dirr (Würzburg) Winter School, Dijon 2025

Concluding remarks and useful results.

Theorem

Let G be an arbitrary Lie subgroup of $\mathrm{GL}_n(\mathbb{R})$ with Lie subalgebra $\mathfrak{g}:=\mathrm{T}_I G$. Then one has the following identities

- (a) Trotter formula: $\lim_{n\to\infty} \left(e^{A/n}e^{B/n}\right)^n = e^{A+B}$ for all $A, B \in \mathfrak{g}$.
- (b) Commutator formula: $\lim_{n\to\infty} \left(e^{A/n} e^{B/n} e^{-A/n} e^{-B/n} \right)^{n^2} = [A, B]$ for all $A, B \in \mathfrak{g}$.

Yamabe's Theorem

Every path-connected subgroup of $GL_n(\mathbb{R})$ is a Lie subgroup of $GL_n(\mathbb{R})$.

Dirr (Würzburg) Winter School, Dijon 2025

Concluding remarks and useful results.

Theorem

Let G be an arbitrary Lie subgroup of $GL_n(\mathbb{R})$ with Lie subalgebra $\mathfrak{g}:=T_IG$. Then one has the following identities

- (a) Trotter formula: $\lim_{n\to\infty} \left(e^{A/n}e^{B/n}\right)^n = e^{A+B}$ for all $A, B \in \mathfrak{g}$.
- (b) Commutator formula: $\lim_{n\to\infty} \left(e^{A/n} e^{B/n} e^{-A/n} e^{-B/n} \right)^{n^2} = [A, B]$ for all $A, B \in \mathfrak{g}$.

Yamabe's Theorem

Every path-connected subgroup of $GL_n(\mathbb{R})$ is a Lie subgroup of $GL_n(\mathbb{R})$.

References:

- Hilgert/Neeb, Structure and Geometry of Lie Groups, Springer, 2012.
- Knapp, Lie Groups Beyond an Introduction, Birkhäuser, 2nd ed., 2002.

Dirr (Würzburg) Winter School, Dijon 2025

The following type of control system is usually called a **bilinear system**

$$\dot{x}(t) = Ax(t) + \sum_{k=1}^{m} u_k(t)B_kx(t), \quad x(0) = x_0 \in \mathbb{R}^n$$
 (\Sigma)

10/41

with $A, B \in \mathbb{R}^{n \times n}$ and $x(t) \in \mathbb{R}^n$ and $u_k(\cdot) \in PC(\mathbb{R}, \mathbb{R})$ for $k = 1, \dots, m$.

The following type of control system is usually called a **bilinear system**

$$\dot{x}(t) = Ax(t) + \underbrace{\sum_{k=1}^{m} u_k(t) B_k x(t)}_{\text{bilinear term}}, \quad x(0) = x_0 \in \mathbb{R}^n$$
 (\Sigma)

with $A, B \in \mathbb{R}^{n \times n}$ and $x(t) \in \mathbb{R}^n$ and $u_k(\cdot) \in PC(\mathbb{R}, \mathbb{R})$ for $k = 1, \dots, m$.

Define the **group lift** of (Σ) as follows

$$\dot{X}(t) = \left(A + \sum_{k=1}^{m} u_k(t)B_k\right)X(t), \quad X(0) = X_0 \in \mathbb{R}^{n \times n}$$
 (\hat{\Sigma})

10/41

with $A, B \in \mathbb{R}^{n \times n}$ and $X(t) \in \mathbb{R}^{n \times n}$ and $u_k(\cdot) \in PC(\mathbb{R}, \mathbb{R})$ for $k = 1, \dots, m$.

Reachable sets of (Σ) and $(\widehat{\Sigma})$:

Denote by $t \mapsto x(t, x_0, u)$ and $t \mapsto X(t, X_0, u)$ the unique solutions of (Σ) and $(\widehat{\Sigma})$ corresponding to the control $u(\cdot)$ and the initial value x_0 and X_0 , respectively.

Note: Uniqueness follows immediately from Picard-Lindelöf and the linear boundedness of the right side implies that $t \mapsto x(t, x_0, u)$ and $t \mapsto X(t, X_0, u)$ exist for all $t \ge 0$.

Dirr (Würzburg) Winter School, Dijon 2025

Reachable sets of (Σ) and $(\widehat{\Sigma})$:

Denote by $t \mapsto x(t, x_0, u)$ and $t \mapsto X(t, X_0, u)$ the unique solutions of (Σ) and $(\widehat{\Sigma})$ corresponding to the control $u(\cdot)$ and the initial value x_0 and x_0 , respectively.

We define the following different types of reachable set:

$$R_{\Sigma}(x_0, T) := \{x(T, x_0, u) \mid u \in PC(\mathbb{R}, \mathbb{R}^m)\}, R_{\widehat{\Sigma}}(X_0, T) := \{X(T, X_0, u) \mid u \in PC(\mathbb{R}, \mathbb{R}^m)\}$$

and

$$R_{\Sigma}(x_0, \leq T) := \bigcup_{0 \leq t \leq T} R_{\Sigma}(x_0, t), \quad R_{\Sigma}(x_0) := \bigcup_{0 \leq t < \infty} R_{\Sigma}(x_0, t)$$

and $R_{\widehat{\Sigma}}(X_0, \leq T)$, $R_{\widehat{\Sigma}}(X_0)$, respectively.

Lifted system – what is it good for?

Lifted system – what is it good for?

- Given a fixed $u(\cdot)$ and the corresponding solution $X(t, I_n, u)$ of $(\widehat{\Sigma})$ then $X(t, I_n u) x_0$ yields the solution of (Σ) with initial value x_0 ;
- Hence the reachable sets $R_{\Sigma}(x_0, T)$ $R_{\Sigma}(x_0, \leq T)$ and $R_{\Sigma}(x_0)$ of (Σ) are related to the corresponding reachable sets of $(\widehat{\Sigma})$ as follows:

$$R_{\Sigma}(x_0,T)=R_{\widehat{\Sigma}}(I_n,T)x_0\,,\quad R_{\Sigma}(x_0,\leq T)=R_{\widehat{\Sigma}}(I_n,\leq T)x_0\,,\quad R_{\Sigma}(x_0)=R_{\widehat{\Sigma}}(I_n)x_0\,.$$

Dirr (Würzburg) Winter School, Dijon 2025

Lifted system – what is it good for?

- Given a fixed $u(\cdot)$ and the corresponding solution $X(t, I_n, u)$ of $(\widehat{\Sigma})$ then $X(t, I_n u) x_0$ yields the solution of (Σ) with initial value x_0 ;
- Hence the reachable sets $R_{\Sigma}(x_0, T)$ $R_{\Sigma}(x_0, \leq T)$ and $R_{\Sigma}(x_0)$ of (Σ) are related to the corresponding reachable sets of $(\widehat{\Sigma})$ as follows:

$$R_{\Sigma}(x_0,T)=R_{\widehat{\Sigma}}(I_n,T)x_0\,,\quad R_{\Sigma}(x_0,\leq T)=R_{\widehat{\Sigma}}(I_n,\leq T)x_0\,,\quad R_{\Sigma}(x_0)=R_{\widehat{\Sigma}}(I_n)x_0\,.$$

• The reachable set $R_{\widehat{\Sigma}}(I_n) \subset GL_n(\mathbb{R})$ takes the form of a (Lie) semigroup, i.e.

$$\mathrm{I}_n \in R_{\widehat{\Sigma}}(\mathrm{I}_n) \quad \text{and} \quad X_1, X_2 \in R_{\widehat{\Sigma}}(\mathrm{I}_n) \quad \Longrightarrow \quad X_1 X_2 \in R_{\widehat{\Sigma}}(\mathrm{I}_n) \,.$$

The last property suggests to apply Lie group theory for analyzing reachable sets of bilinear systems.

Dirr (Würzburg) Winter School, Dijon 2025

Recall: What is an (right) invariant system on a Lie group *G*?

Let \mathfrak{g} be the Lie algebra of G and let $r_g: G \to G$ denote right-multiplication by g.

• A vector field ξ on G is called right-invariant if it takes the form

$$\xi(g) = \mathrm{D} r_g(e) A$$
, where A is a fixed element of \mathfrak{g} .

A control system is called right-invariant if it takes the form

 $\dot{g} = \xi(g, u)$, such that all vector fields $\xi(g, u)$ are right-invariant.

Dirr (Würzburg) Winter School, Dijon 2025

Recall: What is an (right) invariant system on a Lie group *G*?

Let \mathfrak{g} be the Lie algebra of G and let $r_g: G \to G$ denote right-multiplication by g.

• A vector field ξ on G is called right-invariant if it takes the form

$$\xi(g) = \mathrm{D} r_g(e) A$$
, where A is a fixed element of \mathfrak{g} .

A control system is called right-invariant if it takes the form

$$\dot{g} = \xi(g, u)$$
, such that all vector fields $\xi(g, u)$ are right-invariant.

Bottom line: $(\widehat{\Sigma})$ constitutes a right-invariant systems on $G = GL_n(\mathbb{R})$

Dirr (Würzburg) Winter School, Dijon 2025

Recall: What is an (right) invariant system on a Lie group *G*?

Let \mathfrak{g} be the Lie algebra of G and let $r_g: G \to G$ denote right-multiplication by g.

• A vector field ξ on G is called right-invariant if it takes the form

$$\xi(g) = \mathrm{D} r_g(e) A$$
, where A is a fixed element of \mathfrak{g} .

A control system is called right-invariant if it takes the form

$$\dot{g} = \xi(g,u)$$
, such that all vector fields $\xi(g,u)$ are right-invariant.

Bottom line: $(\widehat{\Sigma})$ constitutes a right-invariant systems on $G = GL_n(\mathbb{R})$

In what follows G will always denote a Lie subgroup of $GL_n(\mathbb{C})$ and \mathfrak{g} its Lie subalgebra in $\mathfrak{gl}_n(\mathbb{R})$ or $\mathfrak{gl}_n(\mathbb{C})$.

Dirr (Würzburg) Winter School, Dijon 2025

For analyzing the **fundamental properties** of bilinear systems we need on more concept:

The *orbit* $\mathcal{O}_{\widehat{\Sigma}}(I_n)$ of I_n with respect to $(\widehat{\Sigma})$ is given by

$$\mathcal{O}_{\widehat{\Sigma}}(\mathrm{I}_n) := \bigcup_{t \in \mathbb{R}} \{X(t, \mathrm{I}_n, u) \mid u \in PC(\mathbb{R}, \mathbb{R}^m)\}.$$

Dirr (Würzburg) Winter School, Dijon 2025

For analyzing the **fundamental properties** of bilinear systems we need on more concept:

The *orbit* $\mathcal{O}_{\widehat{\Sigma}}(I_n)$ of I_n with respect to $(\widehat{\Sigma})$ is given by

$$\mathcal{O}_{\widehat{\Sigma}}(\mathrm{I}_n) := \bigcup_{t \in \mathbb{R}} \{X(t,\mathrm{I}_n,u) \mid u \in PC(\mathbb{R},\mathbb{R}^m)\}.$$

Fundamental Theorem I (Jurdjevic & Sussmann 1972)

The orbit of the lifted system

$$\dot{X}(t) = \left(A + \sum_{k=1}^{m} u_k(t)B_k\right)X(t). \tag{\hat{\Sigma}}$$

14/41

is a Lie subgroup with Lie algebra $\langle A, B_1, \dots, B_m \rangle_L$, where $\langle A, B_1, \dots, B_m \rangle_L$ denotes the real Lie algebra generated by A, B_1, \dots, B_m (via iterated commutators).

Fundamental Theorem I (Jurdjevic & Sussmann 1972)

The orbit of the lifted system

$$\dot{X}(t) = \left(A + \sum_{k=1}^{m} u_k(t)B_k\right)X(t).$$
 ($\widehat{\Sigma}$)

14/41

is a Lie subgroup with Lie algebra $\langle A, B_1, \dots, B_m \rangle_L$, where $\langle A, B_1, \dots, B_m \rangle_L$ denotes the real Lie algebra generated by A, B_1, \dots, B_m (via iterated commutators).

Proof sketch:

- Obviously, the orbit $\mathcal{O}_{\widehat{\Sigma}}(I_n)$ is a path-connected subgroup of $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$ and hence by Yamabe's theorem a Lie subgroup. Let \mathfrak{g} be denote the Lie subalgebra of $\mathcal{O}_{\widehat{\Sigma}}(I_n)$ and let $G(A, B_1, ..., B_m)$ be the unique path-connected Lie subgroup corresponding to $\langle A, B_1, ..., B_m \rangle_L$.
- Then $\mathcal{O}_{\widehat{\Sigma}}(I_n) \subset G(A, B_1, \dots, B_m)$ implies $\mathfrak{g} \subset \langle A, B_1, \dots, B_m \rangle_L$.
- Conversely, e^{At} and $e^{(A+B_k)t}$, $k=1,\ldots,m$ are in $\mathcal{O}_{\widehat{\Sigma}}(I_n)$ and thus $A,A+B_1,\ldots,A+B_m\in\mathfrak{g}$. Since \mathfrak{g} is a Lie subalgebra we conclude $A,B_1,\ldots,B_m\in\mathfrak{g}$ and $\langle A,B_1,\ldots,B_m\rangle_L\subset\mathfrak{g}$.

Definition: Let G be a path-connected Lie subgroup $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$ with Lie algebra \mathfrak{g} and let $(\widehat{\Sigma})$ be the above bilinear system with $A, B_1, \ldots, B_m \in \mathfrak{g}$.

- $(\widehat{\Sigma})$ is called controllable (w.r. to G) if $R_{\widehat{\Sigma}}(I_n) = G$.
- $(\widehat{\Sigma})$ is called accessible (w.r. to G) if $R_{\widehat{\Sigma}}(I_n)$ has interior points (w.r. to G).
- $(\widehat{\Sigma})$ is called strongly accessible if $R_{\widehat{\Sigma}}(I_n) \leq T$ has interior points for all T > 0.

Dirr (Würzburg) Winter School, Dijon 2025

Definition: Let G be a path-connected Lie subgroup $GL_n(\mathbb{R})$ or $GL_n(\mathbb{C})$ with Lie algebra \mathfrak{g} and let $(\widehat{\Sigma})$ be the above bilinear system with $A, B_1, \ldots, B_m \in \mathfrak{g}$.

- $(\widehat{\Sigma})$ is called controllable (w.r. to G) if $R_{\widehat{\Sigma}}(I_n) = G$.
- $(\widehat{\Sigma})$ is called accessible (w.r. to G) if $R_{\widehat{\Sigma}}(I_n)$ has interior points (w.r. to G).
- $(\widehat{\Sigma})$ is called strongly accessible if $R_{\widehat{\Sigma}}(I_n), \leq T$ has interior points for all T > 0.

Fundamental Theorem II (Jurdjevic & Sussmann 1972; Brockett 1973)

Given a bilinear systems $(\widehat{\Sigma})$ on G with $A, B_1, \ldots, B_m \in \mathfrak{g}$. Then one has

- (a) $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g} \iff (\widehat{\Sigma})$ is strongly accessible. $\iff (\widehat{\Sigma})$ is accessible.
- (c) $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g}$ and $R_{\widehat{\Sigma}}(I_n)$ is a group. \iff $(\widehat{\Sigma})$ is controllable.
- (c) $\langle B_1, \ldots, B_m \rangle_{\text{LA}} = \mathfrak{g} \implies (\widehat{\Sigma})$ is controllable.
- (d) If $G \subset GL_n(\mathbb{R})$ is additionally compact, the one has the equivalence:

$$\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma})$$
 is controllable.

Dirr (Würzburg) Winter School, Dijon 2025

Fundamental Theorem II (Jurdjevic & Sussmann 1972; Brockett 1973)

Given a bilinear systems $(\widehat{\Sigma})$ on G with $A, B_1, \ldots, B_m \in \mathfrak{g}$. Then one has

- (a) $\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma})$ is strongly accessible. $\iff (\widehat{\Sigma})$ is accessible.
- (c) $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g}$ and $R_{\widehat{\Sigma}}(I_n)$ is a group. $\iff (\widehat{\Sigma})$ is controllable.
- (c) $\langle B_1, \ldots, B_m \rangle_{LA} = \mathfrak{g} \implies (\widehat{\Sigma})$ is controllable.
- (d) If $G \subset GL_n(\mathbb{R})$ is additionally compact, the one has the equivalence:

$$\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma}) \text{ is controllable.}$$

Proof sketch. (a) \Longrightarrow : Assume $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g}$ and consider maps of the form

$$(t_1,\ldots,t_r)\mapsto \mathrm{e}^{t_1C_1}\cdots\mathrm{e}^{t_rC_r}$$

with C_l of the from $A + \sum_{k=1}^m u_k B_k$, $t_l > 0$ and $\sum_{l=1}^r t_l \le T$. Then one can prove that there is such a map with rank equal to dim g. This implies strong accessibility

Dirr (Würzburg) Winter School, Dijon 2025

Fundamental Theorem II (Jurdjevic & Sussmann 1972; Brockett 1973)

Given a bilinear systems $(\widehat{\Sigma})$ on G with $A, B_1, \ldots, B_m \in \mathfrak{g}$. Then one has

- (a) $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g} \iff (\widehat{\Sigma})$ is strongly accessible. $\iff (\widehat{\Sigma})$ is accessible.
- (c) $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g}$ and $R_{\widehat{\Sigma}}(I_n)$ is a group. $\iff (\widehat{\Sigma})$ is controllable.
- (c) $\langle B_1, \ldots, B_m \rangle_{\text{LA}} = \mathfrak{g} \implies (\widehat{\Sigma})$ is controllable.
- (d) If $G \subset GL_n(\mathbb{R})$ is additionally compact, the one has the equivalence:

$$\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma}) \text{ is controllable.}$$

Proof sketch. (a) \Longrightarrow : \checkmark

 \Longrightarrow : Assume $(\widehat{\Sigma})$ accessibility then the orbit $\mathcal{O}_{\widehat{\Sigma}}(I_n)$ is equal to G, cf. proof of part (b). Then we conclude by FT I $\langle A, B_1, \ldots, B_m \rangle_{LA} = \mathfrak{g}$.

Dirr (Würzburg) Winter School, Dijon 2025

Fundamental Theorem II (Jurdjevic & Sussmann 1972; Brockett 1973)

Given a bilinear systems $(\widehat{\Sigma})$ on G with $A, B_1, \ldots, B_m \in \mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{R})$. Then one has

- (a) $\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma})$ is strongly accessible. $\iff (\widehat{\Sigma})$ is accessible.
- (c) $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g}$ and $R_{\widehat{\Sigma}}(I_n)$ is a group. $\iff (\widehat{\Sigma})$ is controllable.
- (c) $\langle B_1, \ldots, B_m \rangle_{LA} = \mathfrak{g} \implies (\widehat{\Sigma})$ is controllable.
- (d) If $G \subset GL_n(\mathbb{R})$ is additionally compact, the one has the equivalence:

$$\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma}) \text{ is controllable.}$$

Proof sketch. (b) \Leftarrow : \checkmark (use part (a))

 \Longrightarrow : Assume $\langle A, B_1, \dots, B_m \rangle_{\operatorname{LA}} = \mathfrak{g}$ and that $R_{\widehat{\Sigma}}(\operatorname{I}_n)$ is a group. Then by part (a) $R_{\widehat{\Sigma}}(\operatorname{I}_n)$ contains interior point. Let X_* be such an interior point in $R_{\widehat{\Sigma}}(\operatorname{I}_n)$. Then $\mathcal{U} := R_{\widehat{\Sigma}}(\operatorname{I}_n)X_*^{-1}$ is equal to $R_{\widehat{\Sigma}}(\operatorname{I}_n)X_*^{-1}$ and moreover a neighborhood of I_n . Thus a standard result implies that $\bigcup_{k \in \mathbb{N}} \mathcal{U}^n$ is equal to G and hence $G = R_{\widehat{\Sigma}}(\operatorname{I}_n)$.

Dirr (Würzburg) Winter School, Dijon 2025

Fundamental Theorem II (Jurdjevic & Sussmann 1972; Brockett 1973)

Given a bilinear systems $(\widehat{\Sigma})$ on G with $A, B_1, \ldots, B_m \in \mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{R})$. Then one has

- (a) $\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma})$ is strongly accessible. $\iff (\widehat{\Sigma})$ is accessible.
- (c) $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g}$ and $R_{\widehat{\Sigma}}(I_n)$ is a group. $\iff (\widehat{\Sigma})$ is controllable.
- (c) $\langle B_1, \ldots, B_m \rangle_{\text{LA}} = \mathfrak{g} \implies (\widehat{\Sigma})$ is controllable.
- (d) If $G \subset GL_n(\mathbb{R})$ is additionally compact, the one has the equivalence:

$$\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma}) \text{ is controllable.}$$

Proof sketch. (c) \Longrightarrow : First, let $\widetilde{\Sigma}$ denote the system which results by setting A=0. Then the orbit $\mathcal{O}_{\widetilde{\Sigma}}(I_n)$ is a group and thus by part (b) equal to G. Moreover, one has

$$\lim_{\tau \to 0} \mathrm{e}^{\tau (A \pm \tau^{-1} t B_k)} = \mathrm{e}^{\pm t B_k}$$

and hence the closure of $R_{\widehat{\Sigma}}(I_n)$ (w.r. to G) is equal to G. Thus $R_{\widehat{\Sigma}}(I_n) = G$, cf. proof of part (d).

Dirr (Würzburg) Winter School, Dijon 2025

Fundamental Theorem II (Jurdjevic & Sussmann 1972; Brockett 1973)

Given a bilinear systems $(\widehat{\Sigma})$ on G with $A, B_1, \ldots, B_m \in \mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{R})$. Then one has

- (a) $\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma})$ is strongly accessible. $\iff (\widehat{\Sigma})$ is accessible.
- (c) $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g}$ and $R_{\widehat{\Sigma}}(I_n)$ is a group. $\iff (\widehat{\Sigma})$ is controllable.
- (c) $\langle B_1, \ldots, B_m \rangle_{\text{LA}} = \mathfrak{g} \implies (\widehat{\Sigma})$ is controllable.
- (d) If $G \subset GL_n(\mathbb{R})$ is additionally compact, the one has the equivalence:

$$\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma}) \text{ is controllable.}$$

Proof sketch. (d) \Leftarrow : \checkmark

 \Longrightarrow : Assume $\langle A, B_1, \ldots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g}$ and that G is compact. Consider the closure of $R_{\widehat{\Sigma}}(\mathrm{I}_n)$ a standard result says that any closed semigroup of a compact Lie group is already a group. Hence the closure of $R_{\widehat{\Sigma}}(\mathrm{I}_n)$ is equal to G. Finally, we have to show that this equality holds even without closure.

Dirr (Würzburg) Winter School, Dijon 2025

Fundamental Theorem II (Jurdjevic & Sussmann 1972; Brockett 1973)

Given a bilinear systems $(\widehat{\Sigma})$ on G with $A, B_1, \ldots, B_m \in \mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{R})$. Then one has

- (a) $\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma})$ is strongly accessible. $\iff (\widehat{\Sigma})$ is accessible.
- (c) $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g}$ and $R_{\widehat{\Sigma}}(I_n)$ is a group. $\iff (\widehat{\Sigma})$ is controllable.
- (c) $\langle B_1, \ldots, B_m \rangle_{LA} = \mathfrak{g} \implies (\widehat{\Sigma})$ is controllable.
- (d) If $G \subset GL_n(\mathbb{R})$ is additionally compact, the one has the equivalence:

$$\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma}) \text{ is controllable.}$$

Proof sketch. (d) \iff : \checkmark

 \Longrightarrow : To this end choose $X_0, X_1 \in G$ and let the system evolve "forward" in time from X_0 and "backward" in time from X_1 . By accessibility both reachable set contain interior point which can be steered from one to the other (due to the fact the $R_{\widehat{\Sigma}}(I_n)$ is dense in G). Concatenating the first to controls with the "reverse" of the third one yields the desired result.

Dirr (Würzburg) Winter School, Dijon 2025

Fundamental Theorem II (Jurdjevic & Sussmann 1972; Brockett 1973)

Given a bilinear systems $(\widehat{\Sigma})$ on G with $A, B_1, \ldots, B_m \in \mathfrak{g} \subset \mathfrak{gl}_n(\mathbb{R})$. Then one has

- (a) $\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma})$ is strongly accessible. $\iff (\widehat{\Sigma})$ is accessible.
- (c) $\langle A, B_1, \dots, B_m \rangle_{LA} = \mathfrak{g}$ and $R_{\widehat{\Sigma}}(I_n)$ is a group. $\iff (\widehat{\Sigma})$ is controllable.
- (c) $\langle B_1, \ldots, B_m \rangle_{\text{LA}} = \mathfrak{g} \implies (\widehat{\Sigma})$ is controllable.
- (d) If $G \subset GL_n(\mathbb{R})$ is additionally compact, the one has the equivalence:

$$\langle A, B_1, \dots, B_m \rangle_{\mathrm{LA}} = \mathfrak{g} \iff (\widehat{\Sigma}) \text{ is controllable.}$$

Remark. Note the for accessibility and controllability aspects piecewise constant controls are perfectly fine in the sense that one cannot improve accessibility and controllability by passing to a larger class of controls.

However, for optimal control issues piecewise constant controls are i.g. not adequate.

Dirr (Würzburg) Winter School, Dijon 2025

Running example cont. Consider the following bilinear system:

$$\dot{X}(t) = (A + u(t)B)X(t) \tag{1}$$

17/41

with

$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$.

- A, B are skew-symmetric and thus $A, B \in \mathfrak{so}_3(\mathbb{R})$.
- Hence we can consider (1) as a system on $SO_3(\mathbb{R})$.
- Clearly, A, B, [A, B] is a basis of $\mathfrak{so}_3(\mathbb{R})$.
- Thus $\langle A, B \rangle_{\mathrm{LA}} = \mathfrak{so}_3(\mathbb{R})$ and thus (1) is accessible.
- $SO_3(\mathbb{R}) \subset GL_3(\mathbb{R})$ is compact and thus (1) is even controllable.

How does FT II help us to determine controllability of the "original" bilinear systems (Σ)? Let us investigate this a bit more general.

Dirr (Würzburg) Winter School, Dijon 2025

Group action. Let G be an arbitrary Lie group and M a smooth manifold. A *group action* of G on M is a map $\alpha: G \times M \to M$ such that the following holds:

$$\alpha(I,p) = p$$
 and $\alpha(g,\alpha(h,p)) = \alpha(gh,p)$ for all $g,h \in G$ and $p \in M$.

Dirr (Würzburg) Winter School, Dijon 2025

Group action. Let G be an arbitrary Lie group and M a smooth manifold. A *group action* of G on M is a map $\alpha: G \times M \to M$ such that the following holds:

$$\alpha(I,p) = p$$
 and $\alpha(g,\alpha(h,p)) = \alpha(gh,p)$ for all $g,h \in G$ and $p \in M$.

Examples:

- The natural action of $GL_n(\mathbb{R})$ on \mathbb{R}^n : $\alpha(X, v) := Xv$.
- The action of $SO_n(\mathbb{R})$ on $S^{n-1} \subset \mathbb{R}^n$: $\alpha(\Theta, x) := \Theta x$.
- The action of SU_n on Her_n : $\alpha(U, H) := UHU^{\dagger}$.
- The action of $GL_n(\mathbb{R})$ of Sym_n : $\alpha(X, B) := XBX^\top$.

Dirr (Würzburg) Winter School, Dijon 2025

Group action. Let G be an arbitrary Lie group and M a smooth manifold. A *group action* of G on M is a map $\alpha: G \times M \to M$ such that the following holds:

$$\alpha(I, p) = p$$
 and $\alpha(g, \alpha(h, p)) = \alpha(gh, p)$ for all $g, h \in G$ and $p \in M$.

Examples:

- The natural action of $GL_n(\mathbb{R})$ on \mathbb{R}^n : $\alpha(X, v) := Xv$.
- The action of $SO_n(\mathbb{R})$ on $S^{n-1} \subset \mathbb{R}^n$: $\alpha(\Theta, x) := \Theta x$.
- The action of SU_n on Her_n : $\alpha(U, H) := UHU^{\dagger}$.
- The action of $GL_n(\mathbb{R})$ of Sym_n : $\alpha(X, B) := XBX^{\top}$.

A group action is called *transitive* if $\alpha(G, p) = M$ for one $p \in M$ and thus for all $p \in M$.

Dirr (Würzburg) Winter School, Dijon 2025

Induced system. Given a bilinear system $(\widehat{\Sigma})$ on $G \subset GL_n(\mathbb{R})$ and a group action α of G on M. Then the *induced system* is given by

$$\dot{p}(t) = D_1 \alpha (I, p(t)) \left(A + \sum_{k=1}^m u_k(t) B_k \right). \tag{\Sigma_{in}}$$

19/41

Induced system. Given a bilinear system $(\widehat{\Sigma})$ on $G \subset GL_n(\mathbb{R})$ and a group action α of G on M. Then the *induced system* is given by

$$\dot{p}(t) = D_1 \alpha (I, p(t)) \left(A + \sum_{k=1}^m u_k(t) B_k \right). \tag{\Sigma_{in}}$$

19/41

Motivation of the above definition:

 $(\Sigma_{\rm in})$ is "designed" such that $t\mapsto lpha \big(X(t),p_0\big)$ is a solution of $(\Sigma_{\rm in})$ with initial value p_0 if X(t) is a solution of $(\widehat{\Sigma})$ with $X(0)={\rm I}$.

Induced system. Given a bilinear system $(\widehat{\Sigma})$ on $G \subset GL_n(\mathbb{R})$ and a group action α of G on M. Then the *induced system* is given by

$$\dot{p}(t) = D_1 \alpha (I, p(t)) \left(A + \sum_{k=1}^m u_k(t) B_k \right). \tag{\Sigma_{in}}$$

19/41

Motivation of the above definition:

 $(\Sigma_{\rm in})$ is "designed" such that $t\mapsto lpha(X(t),p_0)$ is a solution of $(\Sigma_{\rm in})$ with initial value p_0 if X(t) is a solution of $(\widehat{\Sigma})$ with $X(0)={\rm I}$.

To see this use the identity

$$\alpha(e^{At}X, p) = \alpha(e^{At}, \alpha(X, p))$$

to obtain $D_1\alpha(X,p)AX = D_1\alpha(I_n,\alpha(Xp))A$ for all $A \in \mathfrak{g}$.

Examples:

- $\alpha(X, v) := Xv$: Induced systems $D_1 \alpha(X, v) \Delta = \Delta v$ and thus $\dot{p}(t) = \left(A + \sum_{k=1}^m u_k(t) B_k\right) p(t)$.
- $\alpha(\Theta, x) := \Theta x$: Induced system $\dot{\varphi}(t) = \left(A + \sum_{k=1}^m u_k(t)B_k\right)\varphi(t)$
- $\alpha(U, H) := UHU^{\dagger}$: Induced system $D_1\alpha(U, H)\Delta = \Delta HU^{\dagger} + UH\Delta^{\dagger}$ and thus

$$\dot{P}(t) = \left[\left(A + \sum_{k=1}^{m} u_k(t)B_k\right), P(t)\right]$$
 (Liouville equation)

• $\alpha(X, B) := XBX^{\top}$: Induced system $D_1\alpha(X, B)\Delta = \Delta BX^{\top} + XB\Delta^{\top}$ and thus

$$\dot{P}(t) = \left(A + \sum_{k=1}^{m} u_k(t)B_k\right)P(t) + P(t)\left(A + \sum_{k=1}^{m} u_k(t)B_k\right)^{\top}$$
 (Lyapunov equation)

Dirr (Würzburg) Winter School, Dijon 2025

Theorem (Induced System)

Given the bilinear system

$$\dot{X}(t) = \left(A + \sum_{k=1}^{m} u_k(t)B_k\right)X(t) \tag{\widehat{\Sigma}}$$

21/41

with $A, B_1, ..., B_m \in \mathfrak{g}$ and let $\alpha : G \times M \to M$ be a group action of the respective Lie subgroup G.

- (a) Then the reachable sets of (Σ_{in}) are given by $R_{\Sigma_{in}}(p_0) = \alpha(R_{\widehat{\Sigma}}(I_n), p_0)$
- (b) If G acts transitive on M and $(\widehat{\Sigma})$ is controllable on G then (Σ_{in}) is controllable on M.

Theorem (Induced System)

Given the bilinear system

$$\dot{X}(t) = \left(A + \sum_{k=1}^{m} u_k(t)B_k\right)X(t) \tag{\widehat{\Sigma}}$$

21/41

with $A, B_1, ..., B_m \in \mathfrak{g}$ and let $\alpha : G \times M \to M$ be a group action of the respective Lie subgroup G.

- (a) Then the reachable sets of $(\Sigma_{\rm in})$ are given by $R_{\Sigma_{\it in}}(p_0) = \alpha (R_{\widehat{\Sigma}}(I_n), p_0)$
- (b) If G acts transitive on M and $(\widehat{\Sigma})$ is controllable on G then (Σ_{in}) is controllable on M.

Proof. Follows immediately by the construction of (Σ_{in}) .

Note. (b) is not an equivalence.

So far we have seen that any controllability analysis starts with the "computation" of the Lie algebra generated by A, B_1, \ldots, B_m .

Some "simple" criteria which allow to avoid "painful" computations:

- (A) first $SL_n(\mathbb{R})$
- (B) then $SO(\mathbb{R})$ and SU_n
- (C) back to $SL_n(\mathbb{R})$

Some "simple" criteria which allow to avoid "painful" computations:

- (A) first $SL_n(\mathbb{R})$
- (B) then $SO(\mathbb{R})$ and SU_n
- (C) back to $SL_n(\mathbb{R})$

Theorem A [goes back to Silva Leite & P. Crouch]

Given the bilinear system

$$\dot{X}(t) = \left(A + \sum_{k=1}^{2} u_k(t)B_k\right)X(t). \tag{\widehat{\Sigma}}$$

22/41

with $A, B_1, B_2 \in \mathfrak{sl}_n(\mathbb{R})$.

- (a) If A is strongly regular and $u_1B_1 + u_2B_2$ satisfies property (*) for some $u_1, u_2 \in \mathbb{R}$ (or vice versa), then $(\widehat{\Sigma})$ is accessible (w.r. to $SL_n(\mathbb{R})$).
- (b) If $u_1B_1 + u_2B_2$ is strongly regular for some $u_1, u_2 \in \mathbb{R}$ and $u_1'B_1 + u_2'B_2$ satisfies property (*) for some $u_1', u_2' \in \mathbb{R}$, then $(\widehat{\Sigma})$ is controllable (w.r. to $\mathrm{SL}_n(\mathbb{R})$).

Theorem A [goes back to Silva Leite & P. Crouch]

Given the bilinear system

$$\dot{X}(t) = \left(A + \sum_{k=1}^{2} u_k(t) B_k\right) X(t). \tag{\widehat{\Sigma}}$$

22/41

with $A, B_1, B_2 \in \mathfrak{sl}_n(\mathbb{R})$.

- (a) If A is strongly regular and $u_1B_1 + u_2B_2$ satisfies property (*) for some $u_1, u_2 \in \mathbb{R}$ (or vice versa), then $(\widehat{\Sigma})$ is accessible (w.r. to $SL_n(\mathbb{R})$).
- (b) If $u_1B_1 + u_2B_2$ is strongly regular for some $u_1, u_2 \in \mathbb{R}$ and $u_1'B_1 + u_2'B_2$ satisfies property (*) for some $u_1', u_2' \in \mathbb{R}$, then $(\widehat{\Sigma})$ is controllable (w.r. to $\mathrm{SL}_n(\mathbb{R})$).

Strong regularity and *-property.

- A is strongly regular, if A is diagonalizable (over \mathbb{C}) and all possible eigenvalue differences $\lambda_k \lambda_l$ for $k \neq l$ are different.
- If A is diagonal then B satisfies the *-property (w.r. to A) if $b_{kl} \neq 0$ for all $k \neq l$.

Theorem A [goes back to Silva Leite & P. Crouch]

Given the bilinear system

$$\dot{X}(t) = \left(A + \sum_{k=1}^{2} u_k(t)B_k\right)X(t). \tag{\widehat{\Sigma}}$$

22/41

with $A, B_1, B_2 \in \mathfrak{sl}_n(\mathbb{R})$.

- (a) If A is strongly regular and $u_1B_1 + u_2B_2$ satisfies property (*) for some $u_1, u_2 \in \mathbb{R}$ (or vice versa), then $(\widehat{\Sigma})$ is accessible (w.r. to $SL_n(\mathbb{R})$).
- (b) If $u_1B_1 + u_2B_2$ is strongly regular for some $u_1, u_2 \in \mathbb{R}$ and $u_1'B_1 + u_2'B_2$ satisfies property (*) for some $u_1', u_2' \in \mathbb{R}$, then $(\widehat{\Sigma})$ is controllable (w.r. to $\mathrm{SL}_n(\mathbb{R})$).

Sketch of proof.

- (a) Let A be diagonal and strongly regular and $B:=u_1B_1+u_2B_2$. Compute $[A,e_ke_l^\top]=\dots$ This shows that $e_ke_l^\top$ is an eigenvector of the linear operator $X\mapsto \mathrm{ad}_A(X):=[A,X]$. Next consider the span of $\mathrm{ad}_A(B),\mathrm{ad}_A^2(B),\mathrm{ad}_A^3(B),\dots$ This yields an ad_A -invariant subspace of $\mathfrak{sl}_n(\mathbb{R})$ which is equal to all $n\times n$ -matrices with zero diagonal. This implies $\langle A,B\rangle_L=\mathfrak{sl}_n(\mathbb{R})$
- Part (b) follows from (a) and FT-II, part (c).

Theorem B

Given the bilinear system

$$\dot{U}(t) = \left(A + u(t)B\right)U(t). \tag{\widehat{\Sigma}}$$

23/41

with $A, B \in \mathfrak{su}_n$. If A is strongly regular and B satisfies (*) (or vice versa), then $(\widehat{\Sigma})$ is controllable (w.r. to $\mathrm{SU}_n(\mathbb{R})$).

Sketch of proof. By the same arguments as in the proof of Thm. A we conclude that the complex Lie algebra generated by $\langle A, B \rangle_L$ is equal to $\mathfrak{sl}_n(\mathbb{C})$. Hence the real Lie algebra generated by $\langle A, B \rangle_L$ has to be \mathfrak{su}_n and thus the result follows from FT-II, part (d).

Theorem B

Given the bilinear system

$$\dot{U}(t) = (A + u(t)B)U(t).$$
 ($\hat{\Sigma}$)

23/41

with $A, B \in \mathfrak{su}_n$. If A is strongly regular and B satisfies (*) (or vice versa), then $(\widehat{\Sigma})$ is controllable (w.r. to $SU_n(\mathbb{R})$).

Sketch of proof. By the same arguments as in the proof of Thm. A we conclude that the complex Lie algebra generated by $\langle A, B \rangle_L$ is equal to $\mathfrak{sl}_n(\mathbb{C})$. Hence the real Lie algebra generated by $\langle A, B \rangle_L$ has to be \mathfrak{su}_n and thus the result follows from FT-II, part (d).

Remark. There's a similar result for $SO_n(\mathbb{R})$, but the formulations is a bit more involved.

Theorem C [Jurdjevic, Kupka, Assoudi, Gauthier, ...]

Given the bilinear system

$$\dot{X}(t) = (A + u(t)B)X(t).$$
 ($\hat{\Sigma}$

24/41

with $A, B \in \mathfrak{sl}_n(\mathbb{R})$. Then $(\widehat{\Sigma})$ is controllable (w.r. to $\mathrm{SL}_n(\mathbb{R})$) if -

Theorem C [Jurdjevic, Kupka, Assoudi, Gauthier, ...]

Given the bilinear system

$$\dot{X}(t) = (A + u(t)B)X(t).$$
 ($\hat{\Sigma}$)

24/41

with $A, B \in \mathfrak{sl}_n(\mathbb{R})$. Then $(\widehat{\Sigma})$ is controllable (w.r. to $SL_n(\mathbb{R})$) if - too complicated for today!

Reference.

- Jurdjevic/Kupka, Control systems on semi-simple Lie groups and their homogeneous spaces, Annales de l'Institut Fourier, 1981.
- R. El Assoudi, J-P.Gauthier, I. Kupka, On subsemigroups of semisimple Lie groups, Annales de l'Institut Henri Poincaré, 1996.

Theorem [Finite time controllability]

Given the bilinear system

$$\dot{U}(t) = \left(A + \sum_{k=1}^{m} u_k(t)B_k\right)U(t) \tag{\widehat{\Sigma}}$$

25/41

on some compact Lie group G with Lie algebra \mathfrak{g} and assume $\langle A, B_1, \ldots, B_m \rangle_L = \mathfrak{g}$.

- (a) Then there exist T > 0 such that $R_{\widehat{\Sigma}}(I_n, \leq T) = G$.
- (b) If G is additionally simple then there exist T > 0 such that even $R_{\widehat{\Sigma}}(I_n, T) = G$.

Theorem [Finite time controllability]

Given the bilinear system

$$\dot{U}(t) = \left(A + \sum_{k=1}^{m} u_k(t)B_k\right)U(t) \tag{\hat{\Sigma}}$$

25/41

on some compact Lie group G with Lie algebra \mathfrak{g} and assume $\langle A, B_1, \dots, B_m \rangle_L = \mathfrak{g}$.

- (a) Then there exist T > 0 such that $R_{\widehat{\Sigma}}(I_n, \leq T) = G$.
- (b) If G is additionally simple then there exist T > 0 such that even $R_{\widehat{\Sigma}}(I_n, T) = G$.

Definition/Sketch of Proof.

- A Lie group is called simple if its Lie algebra has no non-trivial ideals, e.g. SU_n is simple.
- (a) Use $G = \bigcup_{n \in \mathbb{N}} \operatorname{int} (R_{\widehat{\Sigma}}(I_n, \leq n))$ and the compactness of G.
- (b) Use the fact that the zero-time ideal is equal to $\mathfrak g$ and thus the zero-time orbit has interior points. Therefore, $R_{\widehat{\Sigma}}(I_n,T')$ is a neighborhood of the identity for some T'>0 and then repeat the argument of part (a).

Bilinear Control Systems – Advanced Properties

References:

- Jurdjevic, Geometric Control Theory, Cambridge University Press, 1997.
- Elliott, Bilinear Control Systems: Matrices in Action, Springer, 2009.
- Agrachev/Sachkov Control Theory from the Geometric Viewpoint, Springer, 2004.

Dirr (Würzburg) Winter School, Dijon 2025

Applications to Quantum Control: Basic Notation

Basic Notation & Terminology

- $(\mathbb{H}, \langle \cdot, \cdot \rangle)$ = underlying Hilbert space
- $S(\mathbb{H})$ unit sphere of \mathbb{H}
- $\psi, \varphi, \dots \in \mathcal{S}(\mathbb{H})$ normalized vectors = pure states
- $\rho = \sum_k \lambda_k \psi_k \psi_k^{\dagger}$ with $\lambda_k > 0$ and $\sum_k \lambda_k = 1$ density operator/matrix = mixed state
- $D(\mathbb{H})=$ set of all density operators/matrices, , in particular $D_n:=D(\mathbb{C}^n)$
- $U(\mathbb{H})$ = the set of all unitary operators on \mathbb{H} , in particular $U_n := U(\mathbb{C}^n)$

Dirr (Würzburg) Winter School, Dijon 2025

Closed Quantum Systems

Schrödinger Equation (= pure state time evolution)

(S)
$$\dot{\psi}(t) = -\mathrm{i} \left(H_0 + \sum_{k=1}^m u_k(t) H_k \right) \psi(t)$$

with

- drift/system Hamiltionian H_0 (= Hermitian operator on \mathbb{H}),
- control Hamiltionians H_k (= Hermitian operators on \mathbb{H}) and
- semiclassical control term $\sum_{k=1}^{m} u_k(t)H_k$.

Closed Quantum Systems

Schrödinger Equation (= pure state time evolution)

(S)
$$\dot{\psi}(t) = -\mathrm{i} \left(H_0 + \sum_{k=1}^m u_k(t) H_k \right) \psi(t)$$

with

- drift/system Hamiltionian H_0 (= Hermitian operator on \mathbb{H}),
- control Hamiltionians H_k (= Hermitian operators on \mathbb{H}) and
- semiclassical control term $\sum_{k=1}^{m} u_k(t)H_k$.

(S) constitutes obviously a bilinear system on $\mathbb{H} \cong \mathbb{C}^n$ and restricts to $S(\mathbb{C}^n)$.

Dirr (Würzburg) Winter School, Dijon 2025

Closed Quantum Systems

Liouville/von Neumann Equation (= mixed state time evolution)

(LvN)
$$\dot{\rho}(t) = -i \left[H_0 + \sum_{k=1}^m u_k(t) H_k, \rho(t) \right]$$

with

- drift/system Hamiltionian H_0 (= Hermitian operator on \mathbb{H}),
- control Hamiltionians H_k (= Hermitian operators on \mathbb{H}) and
- semiclassical control term $\sum_{k=1}^{m} u_k(t)H_k$.

Closed Quantum Systems

Liouville/von Neumann Equation (= mixed state time evolution)

(LvN)
$$\dot{\rho}(t) = -i \left[H_0 + \sum_{k=1}^m u_k(t) H_k, \rho(t) \right]$$

with

- drift/system Hamiltionian H_0 (= Hermitian operator on \mathbb{H}),
- control Hamiltionians H_k (= Hermitian operators on \mathbb{H}) and
- semiclassical control term $\sum_{k=1}^{m} u_k(t)H_k$.

(*LvN*) constitutes a bilinear system on the space $\operatorname{Her}_n(\mathbb{C})$ of all Hermitian matrices leaving $D(\mathbb{H})$ invariant

Dirr (Würzburg) Winter School, Dijon 2025

Closed Quantum Systems

Group Lift (= time evolution of the unitary propagator)

(P)
$$\dot{U}(t) = -i \Big(H_0 + \sum_{k=1}^m u_k(t) H_k \Big) U(t), \quad U(0) = I_n$$

where $U(t) \in U_n$ (or SU_n) is called the unitary propagator of the system.

Dirr (Würzburg) Winter School, Dijon 2025

Closed Quantum Systems

Group Lift (= time evolution of the unitary propagator)

(P)
$$\dot{U}(t) = -i \Big(H_0 + \sum_{k=1}^m u_k(t) H_k \Big) U(t), \quad U(0) = I_n$$

where $U(t) \in U_n$ (or SU_n) is called the unitary propagator of the system.

(P) constitutes a bilinear system on Un_n or SU_n . the previous systems (S) and (LvN) are induced by (P).

Dirr (Würzburg) Winter School, Dijon 2025

"The" basic controllability result for closed quantum systems:

Controllability of closed QS

Given

$$\dot{\rho}(t) = \left[i\left(H_0 + \sum_{k=1}^m u_k(t)H_k\right), \rho(t)\right] \quad \rho(0) = \rho_0 \in D_n. \tag{Σ_{CQ}}$$

and

$$\dot{U}(t) = \mathrm{i}\Big(H_0 + \sum_{k=1}^m u_k(t)H_k\Big)U(t) \quad U(0) = \mathrm{I}_n.$$
 $(\widehat{\Sigma}_{CQ})$

31/41

- (a) If $\langle iH_0, \dots, iH_m \rangle_L$ generates a closed subgroup $G \subset U_n$ then $R_{\widehat{\Sigma}_{CO}}(I_n) = G$.
- (b) In particular, $\langle iH_0, \dots, iH_m \rangle_L = \mathfrak{u}_n$ (resp. $= \mathfrak{su}_n$) implies $R_{\widehat{\Sigma}_{CO}}(I_n) = U_n$ (resp. $= SU_n$).
- (c) Under the conditions of (b) one has controllability of (Σ_{CQ}) on the unitary orbit of ρ_0 .

Proof: Since U_n and SU_n are compact the results follow from FT II and Thm. on induced systems.

Dirr (Würzburg) Winter School, Dijon 2025

Control of Spin-Systems (Khaneja, Brockett, Schulte-Herbrüggen, Albertini & D'Alessandro, ...)

Given

$$\dot{U}(t) = i\left(H_0 + \sum_{k=1}^m u_k(t)H_k\right)U(t) \quad U(0) = I_n. \tag{Σ_{Spin}}$$

32/41

If the following two conditions are satisfied (Σ_{Spin}) is controllable on SU_n (resp. Un_n).

- $\langle iH_1, \dots, iH_m \rangle_L$ contains the Lie algebras generated by all local Hamiltonians.
- The interaction Hamiltonian H_0 is given by a sum of two-particle interactions such that the associated connectivity graph is connected.

Proof: Compute commutator in a clever way!

Dirr (Würzburg) Winter School, Dijon 2025

For introducing open systems we need some further concepts from QM:

Tensor products and the tracing out operation

• Given two QS-systems (Σ_1) and (Σ_2) over \mathbb{H}_1 and \mathbb{H}_2 , resp.

Hilbert space of the coupled system is given by : $\mathbb{H}_1 \otimes \mathbb{H}_2$ ($\mathbb{H}_1 \times \mathbb{H}_2$ too "small")

Dirr (Würzburg) Winter School, Dijon 2025

For introducing open systems we need some further concepts from QM:

Tensor products and the tracing out operation

- Given two QS-systems (Σ₁) and (Σ₂) over ℍ₁ and ℍ₂, resp.
 Hilbert space of the coupled system is given by : ℍ₁ ⊗ ℍ₂ (ℍ₁ × ℍ₂ too "small")
- Given two states $\rho_1 \in D(\mathbb{H}_1)$ and $\rho_2 \in D(\mathbb{H}_2)$. How can we associate to ρ_1 and ρ_2 a state of the coupled system $(\Sigma_1 \otimes \Sigma_2)$: $(\rho_1, \rho_2) \mapsto \rho_1 \otimes \rho_2$ (product state)

Dirr (Würzburg) Winter School, Dijon 2025

For introducing open systems we need some further concepts from QM:

Tensor products and the tracing out operation

- Given two QS-systems (Σ₁) and (Σ₂) over ℍ₁ and ℍ₂, resp.
 Hilbert space of the coupled system is given by : ℍ₁ ⊗ ℍ₂ (ℍ₁ × ℍ₂ too "small")
- Given two states $\rho_1 \in D(\mathbb{H}_1)$ and $\rho_2 \in D(\mathbb{H}_2)$. How can we associate to ρ_1 and ρ_2 a state of the coupled system $(\Sigma_1 \otimes \Sigma_2)$: $(\rho_1, \rho_2) \mapsto \rho_1 \otimes \rho_2$ (product state)
- Conversely, given $\rho \in D(\mathbb{H}_1 \otimes \mathbb{H}_2)$ of the coupled system $(\Sigma_1 \otimes \Sigma_2)$. How can one associate to ρ a state of (Σ_1) and (Σ_2) , resp.: $\rho \mapsto \operatorname{tr}_{\Sigma_2} \rho$ and $\rho \mapsto \operatorname{tr}_{\Sigma_1} \rho$ (partial trace)

Defining property: There exists a unique $\Delta \in \mathcal{D}(\mathbb{H}_1)$ such that

$$\operatorname{tr}(\rho(A \otimes I)) = \operatorname{tr}(ZA)$$
 for all observables A of Σ_1

Thus set $\operatorname{tr}_{\Sigma_2} \rho := \Delta$

• Note: $\operatorname{tr}_{\Sigma_2}(\rho_1\otimes\rho_2)=\rho_1$ and $\operatorname{tr}_{\Sigma_1}(\rho_1\otimes\rho_2)=\rho_2$. BUT in general $\operatorname{tr}_{\Sigma_2}(\rho)\otimes\operatorname{tr}_{\Sigma_1}(\rho)\neq\rho$.

Dirr (Würzburg) Winter School, Dijon 2025

Quantum channels and complete positivity

- A linear map $\Phi: \operatorname{Her}_n \to \operatorname{Her}_n$ is trace-preserving if $\operatorname{tr}(\Phi(S)) = \operatorname{tr}(S)$ for all $S \in \operatorname{Her}_n$.
- A linear map $\Phi : \operatorname{Her}_n \to \operatorname{Her}_n$ is positive if $\Phi(S) \geq 0$ for all $S \geq 0$.
- A linear map $\Phi : \operatorname{Her}_n \to \operatorname{Her}_n$ is k-positive if $I_k \otimes \Phi : \operatorname{Her}_{kn} \to \operatorname{Her}_{kn}$ is positive.
- A liner map $\Phi : \operatorname{Her}_n \to \operatorname{Her}_n$ is completely positive if Φ is k-positive for all $k \in \mathbb{N}$.
- For $\mathbb{H} = \mathbb{C}^n$ one has the equivalence:
 - Φ completely positive \iff Φ *n*-positive \iff Choi-matrix positive
- A linear map $\Phi: \operatorname{Her}_n \to \operatorname{Her}_n$ is a quantum channel if it is trace-preserving and completely positive.

Dirr (Würzburg) Winter School, Dijon 2025

Quantum channels and complete positivity

- A linear map $\Phi : \operatorname{Her}_n \to \operatorname{Her}_n$ is trace-preserving if $\operatorname{tr}(\Phi(S)) = \operatorname{tr}(S)$ for all $S \in \operatorname{Her}_n$.
- A linear map $\Phi : \operatorname{Her}_n \to \operatorname{Her}_n$ is positive if $\Phi(S) \geq 0$ for all $S \geq 0$.
- A linear map $\Phi: \operatorname{Her}_n \to \operatorname{Her}_n$ is k-positive if $I_k \otimes \Phi: \operatorname{Her}_{kn} \to \operatorname{Her}_{kn}$ is positive.
- A liner map $\Phi : \operatorname{Her}_n \to \operatorname{Her}_n$ is completely positive if Φ is k-positive for all $k \in \mathbb{N}$.
- For $\mathbb{H} = \mathbb{C}^n$ one has the equivalence:

```
\Phi completely positive \iff \Phi n-positive \iff Choi-matrix positive
```

• A linear map $\Phi: \operatorname{Her}_n \to \operatorname{Her}_n$ is a quantum channel if it is trace-preserving and completely positive.

Why complete positivity?

Dirr (Würzburg) Winter School, Dijon 2025

Why complete positivity?

- QM viewpoint: These are the right objects to describe state transitions in open QM
- Mathematical viewpoint: Completely positive maps enjoy a much "nicer" mathematical structure then the positive ones.

Dirr (Würzburg) Winter School, Dijon 2025

Why complete positivity?

- QM viewpoint: These are the right objects to describe state transitions in open QM
- Mathematical viewpoint: Completely positive maps enjoy a much "nicer" mathematical structure then the positive ones.

Examples and characterizations (for $\mathbb{H} = \mathbb{C}^n$):

A linear map $\Phi: TrC(\mathbb{H}) \to TrC(\mathbb{H})$ is a quantum channel if and only if one of the following representations holds:

$$\Phi(\rho) = \sum_{k=1}^{N} V_k \rho V_k^{\dagger} \quad \text{with} \quad \sum_{k=1}^{N} V_k^{\dagger} V_k = I_n$$
 (Kraus)

or

$$\Phi(\rho)=\operatorname{tr}_{\Sigma_B}\left(U(\rho\otimes\omega)U^\dagger\right)\quad\text{with}\quad\omega\in D(\mathbb{H}_B)\quad\text{and}\quad U\in U(\mathbb{C}^n\otimes\mathbb{H}_B)\,.\quad\text{(Stinespring)}$$

- Kraus for N=1: $\Phi(\rho)=U\rho U^{\dagger}$ with U unitary.
- Generalizations to dim $\mathbb{H} = \infty$ do exist!

Dirr (Würzburg)

The dynamics of open quantum systems

Postulate: The dynamics of an open quantum systems (Σ) is described by a one-parameter semigroup of quantum channels, i.e. if ρ_0 is the initial state of (Σ) the time evolution is given by

$$\rho(t) = \mathrm{e}^{tL} \rho_0 \,,$$

or, alternatively, by the solution of the linear "ODE"

$$\dot{\rho}(t) = L\rho(t), \quad \rho(0) = \rho_0,$$

such that e^{Lt} is a quantum channel for all $t \ge 0$.

The dynamics of open quantum systems

Postulate: The dynamics of an open quantum systems (Σ) is described by a one-parameter semigroup of quantum channels, i.e. if ρ_0 is the initial state of (Σ) the time evolution is given by

$$\rho(t) = \mathrm{e}^{tL} \rho_0 \,,$$

or, alternatively, by the solution of the linear "ODE"

$$\dot{\rho}(t) = L\rho(t), \quad \rho(0) = \rho_0,$$

such that e^{Lt} is a quantum channel for all $t \ge 0$.

Problem: How to choose *L* such that e^{Lt} is a Q-channel for all $t \ge 0$?

Problem: How to choose *L* such that e^{Lt} is a Q-channel for all $t \ge 0$?

Theorem (Gorini, Kossakowski, Sudarshan / Lindblad 1976)

 $L: \operatorname{Her}_n \to \operatorname{Her}_n$ is the infinitesimal generator of a (uniformly continuous) semigroup of quantum channels if and only if it allows the following representation:

$$L(\rho) = iad_{H}(\rho) + \sum_{k} \left(2V_{k}\rho V_{k}^{\dagger} - V_{k}^{\dagger}V_{k}\rho - \rho V_{k}^{\dagger}V_{k} \right)$$
 (GKSL)

37/41

Remark:

- Gorini, Kossakowski, Sudarshan treated the finite dimensional case.
- Lindblad the uniformly continuous infinite dimensional case proof rather involved!
- The infinite dimensional strongly continuous case is still open.

Dirr (Würzburg) Winter School, Dijon 2025

Control Problem: Given a controlled GKSL-equation

$$\dot{\rho}(t) = i \left(a d_{H_0}(\rho(t)) + \sum_{k=1}^{m} u_k(t) a d_{H_k}(\rho(t)) \right) + \gamma \sum_{k} \left(2 V_k \rho(t) V_k^{\dagger} - V_k^{\dagger} V_k \rho(t) - \rho(t) V_k^{\dagger} V_k \right), \gamma \ge 0$$
(c-GKSL)

What can be said about its reachable sets?

Dirr (Würzburg) Winter School, Dijon 2025

Control Problem: Given a controlled GKSL-equation

$$\dot{\rho}(t) = i \left(a d_{H_0}(\rho(t)) + \sum_{k=1}^{m} u_k(t) a d_{H_k}(\rho(t)) \right) + \gamma \sum_{k} \left(2 V_k \rho(t) V_k^{\dagger} - V_k^{\dagger} V_k \rho(t) - \rho(t) V_k^{\dagger} V_k \right), \gamma \ge 0$$
(c-GKSL)

What can be said about its reachable sets? - not that much!

Dirr (Würzburg) Winter School, Dijon 2025

Control Problem: Given a controlled GKSL-equation

$$\dot{\rho}(t) = i \left(a d_{H_0}(\rho(t)) + \sum_{k=1}^{m} u_k(t) a d_{H_k}(\rho(t)) \right) + \gamma \sum_{k} \left(2 V_k \rho(t) V_k^{\dagger} - V_k^{\dagger} V_k \rho(t) - \rho(t) V_k^{\dagger} V_k \right), \gamma \ge 0$$
(c-GKSL)

What can be said about its reachable sets? – not that much!

Theorem (Ando 1989 / vom Ende, D., Keyl, Schulte-Herbrüggen 2019)

Assume that (c-GKSL) is unital, i.e. that I_n is an equilibrium of (c-GKSL).

- (a) For $\gamma > 0$ fixed, the reachable set $R_{\text{c-GKSL}}(\rho_0)$ is contained in the set of all $\rho \in D_n$ which are majorized by ρ_0 .
- (b) If $\gamma \in \{0,1\}$ can be switch on and off and if the following conditions hold:
 - (i) $\langle iH_0, \ldots, iH_m \rangle_{LA} \supset \mathfrak{su}_n$
 - (ii) $V_1 = V_1^{\dagger} \neq 0$ and $V_i = 0$ for $i \geq 2$

then the reachable set $R_{\text{c-GKSL}}(\rho_0)$ coincides with the set of all $\rho \in D_n$ which are majorized by ρ_0 .

Dirr (Würzburg) Winter School, Dijon 2025

What have I left out?

- Optimal control
- Infinite dimensional quantum systems
- "Ensemble" control of quantum systems
- Quantum speed limits
- ...
- ...

Dirr (Würzburg) Winter School, Dijon 2025

What have I left out?

- Optimal control (D. Sugny, ...)
- Infinite dimensional quantum systems (N. Boussaid, Th. Chambrion, E. Pozzoli,
 P. Rouchon, , M. Mirrahimi, U. Boscain, M. Sigalotti, ...)
- "Ensemble" control of quantum systems (U. Boscain, M. Sigalotti, ...)
- Quantum speed limits (Th. Chambrion, E. Pozzzoli, K. Beauchard, ...)
- ...
- ...

Dirr (Würzburg) Winter School, Dijon 2025

Some References

- E.B. Davies, *Open Quantum Systems*, Academic Press, 1976.
- S. Attal, et al., *Open Quantum Systems I-III*, Springer-LNM, 2006.
- D'Alessandro, Introduction to Quantum Control and Dynamics, Chapman and Hall/CRC, 2nd ed., 2024
- G. Dirr and U. Helmke, Lie Theory for Quantum Systems, GAMM Mitteilungen, 2008.
- N. Khaneja, R. Brockett, S. Glaser, Time-optimal control in spin systems, Phys. Review A, 2001.
- I. Kurniawan, G- Dirr and U. Helmke, Controllability aspects of quantum dynamics, IEEE Trans. Autom. Control, 2012.
- F. vom Ende, M. Keyl, G. Dirr and T. Schulte-Herbrüggen, Reachability in Infinite-Dimensional Unital Open Quantum Systems with Switchable GKS–Lindblad Generators, *Open* Syst. Inf. Dyn., 2019.
- M. Keyl, Quantum control in infinite dimensions and Banach-Lie algebras: Pure point spectrum, CDC, 2019 (see also arXiv 2018).

Dirr (Würzburg) Winter School, Dijon 2025

That's it!

Thanks a lot for your attention!

Dirr (Würzburg) Winter School, Dijon 2025

...

Dirr (Würzburg) Winter School, Dijon 2025