$|T \otimes CQS \rangle$

Thermodynamics of precision From counting statistics to clocks

Mark T. Mitchison

Quantum Carnot Workshop

UK Research

THE ROYAL SOCIETY

Co-funded by the **European Union**

26/11/2024

Thermodynamics

Thermodynamics is a **practically motivated** physical theory:

What can we do, and how well can we do it, with available resources? () ()

S. Carnot, *Reflexions sur la Puissance Motrice du Feu,* (1824)

TCQ

Quantum thermodynamics

What can we do, and how well can we do it, with quantum resources?

Schmiegelow et al., Phys. Rev. Lett. **116**, 033002 (2016)

von Lindenfels et al., Phys. Rev. Lett. **123**, 080602 (2019)

Rev. Lett. **122**, 110601 (2019)

Nature Nanotech. **13**, 920 (2019)

Beyond heat engines

Does thermodynamics limit the efficiency of...

- entanglement/coherence generation
- quantum information processing
- precision measurement

T. Bothwell et al., *Resolving the gravitational redshift across* a millimetre-scale atomic sample, Nature 602, 420 (2022)

...and what do we fundamentally learn if so?

B. Stray et al., *Quantum sensing for gravity cartography,* Nature **602,** 590 (2022)

Thermodynamics of precision

What are the physical limits of precision?

Quantum uncertainty relations: $\Delta q \cdot \Delta p \ge \frac{n}{2}$

Thermodynamic uncertainty relations (TURs):

Seifert, Annu. Rev. Condens. Matter Phys. **10** 171 (2019) Horowitz & Gingrich, Nature Phys. **16**, 15 (2020)

Quantum thermodynamics \rightarrow "coherence" allows higher SNR for given $\dot{\Sigma}$

Ptaszynski, Phys. Rev. B **98**, 085425 (2018) Agarwalla & Segal, Phys. Rev. B **98**, 155438 (2018) Brandner et al., Phys. Rev. Lett. **120**, 090601 (2018)

LIGO, Science **372**, 1333 (2021)

Anti-symmetric port

.

Squeezeo source

Huber (TU Wien)

Gasparinetti (Chalmers)

me

UK Research and Innovation

Co-funded by the European Union

Ares (Oxford)

Apollaro (Malta)

Prior (Murcia)

Thermodynamics of clocks

A clock is a machine that converts energy into a sequence of ticks

What are the minimal resources? How efficient can a clock be?

What happens as we scale clocks down to the quantum domain?

Need an **autonomous** framework to ensure fair bookkeeping:

- ticks are generated continuously and recorded spontaneously in a register
- resources powering the clockwork are time independent

Erker, MTM, Silva, Woods, Brunner & Huber, Phys. Rev. X 7, 031022 (2017) Milburn, Contemp. Phys. **61**, 69 (2019) Pearson, et al., Erker, Huber & Ares, Phys. Rev. X 11, 021029 (2019) Schwarzhans, Lock, Erker, Friis & Huber, Phys. Rev. X 11, 011046 (2021)

Quantifying performance

Resolution $\nu = \mu^{-1}$ Accuracy $\mathcal{N} = \frac{\mu^2}{-2}$

Erker, MTM, Silva, Woods, Brunner & Huber, Phys. Rev. X 7, 031022 (2017)

- mean waiting time: $\mu_i = \langle \tau_i \rangle$ variance: $\sigma_i^2 = \langle (\tau_i \mu_i)^2 \rangle$
- Assuming clockwork is a renewal process: all τ_i are i.i.d. random variables
 - (average tick frequency)
 - (number of ticks before the clock is off by one tick)

c.f. Allan variance
$$\sigma_y^2(T) \sim \frac{\mu}{NT}$$
 for large T

Clocks & counting statistics

 $\mathrm{d}N$ Can also consider full counting statistics of the "tick current" I(t)dt

Resolution
$$v = J$$

Accuracy $\mathcal{N} = \frac{J}{D}$

(average tick frequency)

These definitions work for general (e.g. non-renewal) processes

Landi, Kewming, MTM & Potts, PRX Quantum 5, 020201 (2024)

(number of ticks before the clock is off by one tick)

Silva, Nurgalieva & Wilming, arXiv:2306.01829

Classical precision bounds

Thermodynamic uncertainty relation (TUR): accuracy is limited by dissipation

Barato & Seifert, Phys. Rev. Lett. **114**, 158101 (2015) Gingrich et al., Phys. Rev. Lett. **116**, 120601 (2016)

Erker et al., Phys. Rev. X 7, 031022 (2017) Pearson et al., Phys. Rev. X **11**, 021029 (2019)

Quantum dynamics allows exponential improven

Kinetic uncertainty relation (KUR): accuracy-resolution tradeoff

Garrahan, Phys. Rev. E **95**, 032134 (2017) Terlizzi & Baiesi, J. Phys. A 52 02LT03 (2019)

$$\frac{J^2}{D} \leq \mathcal{A} \implies \mathcal{N}\nu \leq \mathcal{A}$$

Quantum dynamics allows quadratic improvement $\mathcal{N} \leq \left(\frac{A}{\nu}\right)$

nent
$$\mathcal{N} = e^{\mathcal{O}(\Sigma_{tick})}$$

Meier, Minoguchi, Sundelin, Apollaro, Erker, Gasparinetti & Huber, arXiv:2407.07948

dynamical activity = (# of transitions)/time

Meier, Schwarzhans, Erker & Huber, Phys. Rev. Lett. **131**, 220201 (2023)

Implications for quantum control

Xuereb, Meier, Erker, MTM & Huber, Phys. Rev. Lett. 131, 160204 (2023)

See also: Xuereb, Debarba, Huber & Erker, arXiv:2311.14561 Meier, Huber, Erker & Xuereb, arXiv:2402.00111

$$U_t |\psi\rangle \rightarrow \int \mathrm{d}t \, p(t) \, U_t |\psi\rangle\langle$$

Generic circuit with *L* ill-timed CNOT gates has an average fidelity $\overline{\mathscr{F}} \leq \left(\frac{1}{2}\left[1 + e^{-\pi^2/\mathscr{N}}\right]\right)^{\frac{L}{2}}$

Stochastic time estimation

What if we can observe more than one type of "tick" event? How to optimally (i.e. accurately & precisely) estimate time using these random events?

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_0 \xrightarrow{t_1} \boldsymbol{\sigma}_1 \xrightarrow{t_2} \cdots \xrightarrow{t_N} \boldsymbol{\sigma}_N$$
$$P(\boldsymbol{\sigma} \mid t) = \int_0^t dt_N \cdots \int_0^{t_2} dt_1 P(\boldsymbol{\sigma}, \mathbf{t} \mid t)$$

Optimal time estimation

A time estimator $\Theta(\sigma)$ is a function of the sequence $\sigma = \sigma_0 \rightarrow \sigma_1 \rightarrow \cdots \rightarrow \sigma_N$

An **accurate** estimator is unbiased: $E[\Theta]$:

A precise estimator has small variance $Var[\Theta] = E[\Theta^2] - E[\Theta]^2$

An efficient estimator is unbiased and saturates the Cramér-Rao bound

$$\mathscr{F}_t = \operatorname{E}\left[\left(\frac{\partial \ln P(\boldsymbol{\sigma} \mid t)}{\partial t}\right)^2\right]$$
 is the **Fishe**

$$= \sum_{\boldsymbol{\sigma}} P(\boldsymbol{\sigma} \mid t) \Theta(\boldsymbol{\sigma}) = t$$

- $\operatorname{Var}[\Theta]\mathcal{F}_t \geq 1$
 - r information

Mean residual time

Fisher information in the saddle-point approximation:

The mean residual time \mathcal{T} controls the optimal asymptotic rate of information gain about time

$$\lim_{t \to \infty} t \mathcal{F}_t = \mathcal{T}^{-1}, \qquad \mathcal{T} = \sum_{\sigma=1}^{a} \frac{p_{\sigma}^{ss}}{\Gamma_{\sigma}}$$

(unbiased estimator & long times)

1

Inspection paradox

Mean residual time: $E[\tau_0] = \mathcal{T} = \sum p_{\sigma}^{ss} \Gamma_{\sigma}^{-1}$.

Inspection paradox! $\mathcal{T} \geq \mathcal{A}^{-1}$

 \mathcal{T} is the *arithmetic* mean of Γ_{σ}^{-1} \mathscr{A}^{-1} is the *harmonic* mean of Γ_{σ}^{-1}

Mean waiting time: $E[\tau_j] = \mathscr{A}^{-1}$, where $\mathscr{A} = \sum p_{\sigma}^{ss} R_{\mu\sigma} = \sum p_{\sigma}^{ss} \Gamma_{\sigma}$ is the dynamical activity μ,σ

Clock uncertainty relation

General CRB:
$$\operatorname{Var}[\Theta]\mathscr{F}_t \ge \left(\frac{\partial \mathrm{E}[\Theta]}{\partial t}\right)^2$$

Bounds steady-state fluctuations of **arbitrary** observables $\Theta(\sigma)$ by measure of activity \mathcal{T}^{-1}

Tighter than the KUR since $\mathcal{T}^{-1} \leq \mathcal{A}$ (and always saturable)

$$\Rightarrow \quad \frac{(\partial_t \mathbf{E}[\Theta])^2}{\operatorname{Var}[\Theta]/t} \equiv \mathcal{S} \leq \mathcal{T}^{-1}$$

arbitrary (real) weights

Best unbiased linear estimator

Linear counting estimator
$$\Theta = \sum_{\mu,\sigma} w_{\mu\sigma} N_{\mu\sigma} - \#$$

arbitrary (

Mean current:
$$J = \lim_{t \to \infty} \frac{d}{dt} E[\Theta] = \sum_{\mu,\sigma} w_{\mu\sigma} J_{\mu\sigma}$$

Current noise: $D = \lim_{t \to \infty} \frac{d}{dt} Var[\Theta] = \overrightarrow{w} \cdot \mathbb{D} \cdot \overline{D}$

Best unbiased linear estimator (BLUE): minimise D subject to the unbiased constraint J = 1

(One) solution is $w_{\mu\sigma} = \frac{\Gamma}{\Gamma_{\sigma}} \Rightarrow \mathcal{S} = \mathcal{T}^{-1}$ so the **CUR can always be saturated**!

Equivalent to maximising the SNR $\mathscr{S} = \frac{(\overrightarrow{w} \cdot \overrightarrow{J})^2}{\overrightarrow{w} \cdot \mathbb{D} \cdot \overrightarrow{w}}$, since \mathscr{S} is invariant under rescaling $\overrightarrow{w} \to r\overrightarrow{w}$

CUR is the tightest precision bound far from equilibrium

 \mathcal{T}^{-1} is the measure of activity that controls steady-state fluctuations far from equilibrium

CUR is the tightest accuracyresolution tradeoff

Accuracy-resolution tradeoff

 $\mathcal{N}\nu \leq \mathcal{T}^{-}$

BLUE counts every transition

Erlang estimator counts only one transition.

Estimator	Weights	SNR	Resolution
BLUE	$w_{\mu\sigma} = \Gamma_{\sigma}^{-1}$	$S = T^{-1}$	$v = \mathcal{A}$
Erlang	$w_{1d} = J_{1d}^{-1}$	$S = T^{-1}$	$v = \mathcal{A}/d$

Maximum accuracy when $\Gamma_{\sigma} = \Gamma \Rightarrow \mathcal{N}_{\text{Erl}} = d$

Woods, Silva, Pütz, Stupar & Renner, PRX Quantum 3, 010319 (2022)

Summary

- •Clock uncertainty relation $\mathcal{S} \leq \mathcal{T}^{-1}$: a kinetic precision bound that is always saturable
- •Mean residual time $\mathcal{T} = \sum p_{\sigma}^{ss} \Gamma_{\sigma}^{-1}$ as a useful measure of activity in stochastic thermodynamics?
- •**Optimal time estimator** has interesting features:

 - Is time-reversal invariant (surprising)
 - Has delta-correlated fluctuations (very surprising!)

Signatures of quantum/non-Markov dynamics? Quantum clock precision?

Prech et al., arXiv:2406.19450 Macieszcak, arXiv:2407.09839

Big picture

Thermodynamic and kinetic constraints on clocks:

- accurate clocks dissipate a lot of energy
- tradeoff between entropy production, accuracy, and resolution

So what?

- •Important when extreme precision (e.g. quantum computation, fundamental physics) or low dissipation (e.g. space applications) is important
- Evidence for extreme (e.g. exponential) quantum precision enhancement
- •What is time?

Coming soon:

- Observing these tradeoffs in electronic devices
- Implications for thermodynamics of other continuous measurements

By measuring time, we are accelerating the heat death of the Universe

Maybe we should stop measuring time!

Thank you

Kacper Prech (Basel)

Gabriel Landi (Rochester)

Florian Meier (TU Vienna)

THE ROYAL SOCIETY

Co-funded by the European Union

Nuriya Nurgalieva (ETH Zurich)

Patrick Potts (Basel)

Ralph Silva (ETH Zurich)

