
T    CQS| ⟩

Co-funded by the 
European Union

Thermodynamics of precision
From counting statistics to clocks

Mark T. Mitchison Quantum Carnot Workshop 26/11/2024



T    CQS| ⟩Thermodynamics
Thermodynamics is a practically motivated physical theory:


What can we do, and how well can we do it, with available resources? 🔥 🔥 🔥 🔥

How efficiently can a 
steam engine convert 

fire into motion?

ΔS ≥ 0

chemical reactions

phase transitions 

black holes 
S. Carnot, Reflexions sur la Puissance Motrice du Feu, (1824)

⇔η ≤ 1 −
Tc

Th



T    CQS| ⟩Quantum thermodynamics
What can we do, and how well can we do it, with quantum resources?
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FIG. S1: Experimental setup. (a) Schematic description. The fast function generator, driving the

AOM and the MW switch, allows for the implementation of the two-stroke engine. Using slow

amplitude modulation of the MW and lock-in detection allows for direct measurement of the net

change in fluorescence induced by the operation of the engine. (b) A photograph showing the

diamond sample on the MW waveguide between the two magnets. The diamond is glowing red

while the green illumination is on.

To efficiently detect the change in fluorescence due to the operation of the engine, that is, due to

the MW driving, lock-in detection was used, where the output of the MW generator was amplitude-

modulated by a ⇠100 Hz square wave, much slower than the repetition rates of the engine, and a
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FIG. 1. Principles of the quantum Pauli engine. (a) Schematic of the experimental setup. The atom cloud (purple
ellipsoid) is trapped in the combined fields of a magnetic saddle potential (orange surface) and an optical dipole trap potential
(blue cylinder) operating at a wavelength of 1070 nm. The absorption pictures are taken with an imaging beam (purple arrow)
in the �z-direction. The scale on the absorption picture corresponds to 50µm. (b) Cycle of the quantum Pauli engine. Starting
with an mBEC that macroscopically populated the ground state of the trap at well-defined temperature T (point A), the first
step, A!B, performs work W1 on the system by compressing the cloud through an increase of the radial trap frequency
!̄B > !̄A. This is achieved by enhancing the power of the trapping laser. The second stroke, B!C, increases the magnetic
field strength from BA = 763.6G to the resonant field BC = 832.2G, while keeping the trap frequency constant. This leads to
a change in the quantum statistics of the system as the working medium now forms a Fermi sea with an associated addition of
Pauli energy EP

2 , which substitutes the heat stroke. Step C!D expands the trap back to the frequency !̄A and corresponds to
the second work stroke W3. Finally, the system is brought back to the initial state with bosonic quantum statistics during step
D!A by driving the magnetic field from the resonant value BC to BA, corresponding to a change in the Pauli energy EP

4 . The
population distributions in the harmonic trap of the atoms with spin up (blue) and down (red) are indicated at each corner.
(c) Examples of absorption pictures at each point of the engine cycle, where the particular change in size from B!C is due to
the Pauli stroke indicating that the Pauli energy increases the size of the cloud in the external potential.

It is instructive to begin with a discussion of the simple
case of a 1D harmonically trapped noninteracting ideal
gas at zero temperature in order to gain physical insight
into the energetic potential of the Pauli principle [9]. A
fully bosonic system only populates the ground state with
energy EB = N~!/2, where N is the number of particles
and ! is the trap frequency [1]. By contrast, the fermionic
counterpart populates all the energy levels up to the
Fermi energy EF = ~!(2N�1)/2 and the total energy of
the system is accordingly EF = ~!(N +1/2)2/2 [1]. The
resulting energy di↵erence due to the change of quantum
statistics, the Pauli energy, is therefore EP = EF�EB =
~!(N2 + N + 1)/2. This enormous di↵erence of total
energy at zero temperature originates from the underly-
ing quantum statistics, dictating a population probabil-
ity distribution across the available quantum energy lev-
els En according to fn = 1/[exp[(En � µ)/(kBT )] ± 1],
where the + (�) sign in the denominator is for fermions
(bosons) with half-integer (integer) spin [21]; here µ is
the chemical potential and kB is the Boltzmann constant.
For increasing temperature, both these distribution func-
tions reduce to the well-known Boltzmann factor, and
quantum e↵ects are absent. Microscopically, the Pauli
energy is equal to EP =

P
n �fnEn, an expression remi-

niscent of that of heat for systems coupled to a bath [2].
Importantly, the quadratic dependence of the energy dif-
ference on the particle number between BEC and Fermi
sea in the 1D case implies that the Pauli energy can be
significant for large N , far exceeding typical energy scales
in comparable quantum thermal machines.

Controlling the quantum statistics

We prepare an interacting, three-dimensional
quantum-degenerate two-component Fermi gas of
up to N = 6 ⇥ 105 6Li atoms (Fig. 1(a)) [22], with
equal population N i of two lowest-lying Zeeman states
i, i.e., N i = N/2. A broad Feshbach resonance centered
at 832.2 G [23] allows us to change the nature of the
many-body state: an mBEC of N/2 molecules is formed
at magnetic field strengths below the resonance, whereas
on resonance a strongly interacting Fermi sea of N 6Li
atoms emerges. For the bosonic regime, we operate
at BA = 763.6 G = BB, where the mBEC has an
interaction parameter of 1/kFa ⇡ 2.3, with kF being
the Fermi wavevector and a the s-wave scattering length
[24, 25]. Here, the temperature of the gas is about
T = 120 nK, corresponding to T/TF ⇡ 0.3 with the
Fermi temperature TF = ~!̄(3N)1/3/kB , and !̄ the
geometric mean trap frequency which can be experi-
mentally controlled. The unitary regime appears on
resonance, BC = 832.2 G = BD, where the gas is dilute,
but strongly interacting, and exhibits universal behavior,
which is independent of the microscopic details due
to the divergence of the scattering length, 1/kFa = 0
[17, 26]. In this regime, Pauli blocking of occupied
single-particle states leads to Fermi-Dirac-type statistics
[27–30]. When the mBEC is adiabatically ramped to
unitarity, the reduced temperature drops to values well
below T/TF < 0.2 [31]. For magnetic field values above
the Feshbach resonance, the gas enters the regime of a

LETTERSNATURE NANOTECHNOLOGY

Our experimental device consisted of an InAs/InP nanowire 
QD in contact with metallic leads, as shown in Fig. 1d. We used 
top heaters21 for the effective thermal biasing of the QD. The dif-
ferential conductance dI/dVext =  G of the QD as a function of  
VG and Vext shows that the QD had a well-defined resonance located at  
VG ≈  0.13 V, as indicated by the intersecting G lines at Vext =  0 V (Fig. 2a).  
This resonance was separated from others by the QD’s charging 
energy of 4.9 meV, which is much larger than kTH = 0.17 meV at 
the highest electronic temperature used in the experiment, T = 2 K. 
No transport via excited states is evident (Fig. 2a). All the results 
discussed in the following were obtained using only this resonance 
as the energy filter. Data from additional devices are presented in 
Supplementary Section B.

To estimate the engine’s efficiency, we calculated the heat flow JQ 
based on experimentally determined parameters. This task required 
a theoretical description that includes full non-linear effects, large 
electron–electron interactions (Coulomb blockade) and goes 
beyond the sequential-tunnelling approximation generally used for 
small Γ. Our theoretical approach used the real-time diagrammatic 
(RTD) technique to expand the Liouville equation for the density 
matrix in Γ and solved the generalized master equations22–24 that 
resulted for a single spin-degenerate energy level. We included all 
contributions to the current up to order Γ2, which includes co-tun-
nelling, level broadening and energy renormalization processes. We 

accounted for R by solving the self-consistent equation for V across 
the QD (Supplementary Section C).

Our analysis of the PE heat-engine performance was based pri-
marily on current measurements that allowed for the accurate deter-
mination of Γ, TH and TC (Fig. 2b–d). We determined Γ by fitting 
the RTD theory to the measured peak in G(Vext =  0) as a function of 
VG with ∆ T =  0 (Fig. 2b). In total, four independent measurements 
were performed at elevated temperatures of around 0.5 and 1.0 K to 
ensure that kT » ħΓ, a required condition for the validity of our the-
ory. We assumed equal tunnelling rates across both InP segments, 
which yielded Γ values in the range 8.3–9.3 GHz (Supplementary 
Sections D and E give details). For further analysis, we used the 
average value Γ =  8.9 GHz (ħΓ =  5.9 μ eV).

We determined TH and TC by measuring Ith(VG) as a response to 
an applied heater bias Vheat (Fig. 2c). The amplitude of Ith is sensitive 
to TH and TC, and characteristically reverses direction at the reso-
nance (VG ≈  0.13 V)17. Using TH and TC as free parameters, we found 
excellent fits of the RTD theory (black lines in Fig. 2c) to the exper-
imental data points, and observed an approximately linear increase 
of TH and TC with Vheat (Fig. 2d) (Supplementary Section D).  
Note that the positive and negative Ith peak amplitudes are not the 
same, which is correctly reproduced by our theory. This asymme-
try is due to electron–electron interactions in the spin-degenerate 
QD orbital at ε0.
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Fig. 1 | Experimental device and its operational principle. a, Scanning transmission electron microscopy with a high-angle annular dark field (STEM-
HAADF) image of a representative InAs/InP/InAs/InP/InAs heterostructured nanowire from the same growth as the nanowires in the devices. Methods 
gives details on the nanowire dimensions. b, Illustration of a QD-based PE heat engine with resonance energy ɛ0. The QD is tunnel-coupled (rate Γ) to 
hot and cold electron reservoirs with Fermi distributions characterized by TH, μH and TC, μC, respectively. An electron that traverses the QD at energy ε0 
removes heat QH from the hot reservoir, converts part of it into useful work, eV, and deposits the remaining part as heat, QC, in the cold reservoir. c, The 
circuit used for thermoelectric characterization features a tunable resistor R (this also includes a 10!kΩ  input impedance of the current preamplifier and a 
4.5!kΩ  resistance of the RC filters (not shown)), a current preamplifier and a voltage source Vext. A separate voltage source, Vheat!= !VL

heat!–!VR
heat is applied in 

a push–pull configuration for running a current through a heater that is electrically decoupled from the hot electron reservoir. d, False-coloured SEM image 
of a nominally identical device to the one used in the experiment. Metallic leads (yellow) make contact to the nanowire (green). Heaters (blue and red) 
run over the contact leads and are insulated from them by a layer of high-k oxide. One of the heaters (red) is used in the experiment for thermal biasing, 
and the other (blue) is unused. The resulting Δ T!=!TH!–!TC is set by the temperature profile of the phonon bath.

NATURE NANOTECHNOLOGY | VOL 13 | OCTOBER 2018 | 920–924 | www.nature.com/naturenanotechnology 921

Koch et al., Nature 621, 723 (2023) Josefsson et al.,  
Nature Nanotech. 13, 920 (2019)
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Does thermodynamics limit the efficiency of…

• entanglement/coherence generation

• quantum information processing

• precision measurement 
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uncharacterized fundamental clock systematic. Two identical clocks 
on the surface of a planet separated by a vertical distance h will differ 
in frequency (δf ) as given by

δf
f

ah
c

= , (1)2

in which f  is the clock frequency, c is the speed of light, and a is the grav-
itational acceleration. The gravitational redshift at Earth’s surface cor-
responds to a fractional frequency gradient of −1.09 × 10−19 mm−1 in the 
coordinate system of Fig. 1a. Measurement of a vertical gradient across 
the atomic sample consistent with the gravitational redshift provides an 
exquisite verification of an individual atomic clock’s frequency control.

Our intra-cloud frequency map (Fig. 3a) allows us to evaluate gradients 
across the atomic sample. Over 10 days, we performed 14 measurements 
(ranging in duration from 1 to 17 h) to search for the gravitational redshift 
across our sample. For each, we fit a linear slope and offset after taking 
into account density shift and second-order Zeeman corrections, report-
ing the slope in Fig. 3b. From this measurement campaign we find the 
weighted mean (standard error of the weighted mean) of the frequency 
gradient in our system to be −1.00(12) × 10−19 mm−1. We evaluate other dif-
ferential systematics (see Methods) and find a final frequency gradient 
of −9.8(2.3) × 10−20 mm−1, consistent with the predicted redshift.

The ability to resolve the gravitational redshift within our system 
suggests a level of frequency control beyond previous clock demon-
strations, vital for the continued advancement of clock accuracy and 
precision. Previous fractional frequency comparisons15 have reached 
uncertainties as low as 4.2 × 10−19. Similarly, we perform a synchronous 
comparison between two uncorrelated regions of our atomic cloud 
(Fig. 4a). By binning about 100 pixels per region, we substantially 
reduce instability caused by quantum projection noise33. Analysing 
the frequency difference between regions from 92 h of data, we find a 
fractional frequency instability of 4.4 × 10−18/ τ√  (τ is the averaging time 
in seconds), resulting in a fractional frequency uncertainty of 7.6 × 10−21 
for full measurement time, nearly two orders of magnitude lower than 
the previous record. From this measurement we infer a single region 
instability of 3.1 × 10−18/ τ√ . Dividing the fractional frequency difference 
by the spatial separation between each region’s centre of mass gives a 

frequency gradient of −1.30(18) × 10−19 mm−1. Correcting for other sys-
tematics as before results in a gradient of −1.28(27) × 10−19 mm−1, again 
fully consistent with the predicted redshift.

In conclusion, we have established a new paradigm for atomic clocks. 
The greatly improved atomic coherence and frequency homogeneity 
throughout our sample allow us to resolve the gravitational redshift 
at the submillimetre scale, observing for the first time the frequency 
gradient from gravity within a single sample. We demonstrate a syn-
chronous clock comparison between two uncorrelated regions with 
a fractional frequency uncertainty of 7.6 × 10−21, advancing precision 
by nearly two orders of magnitude. These results suggest that there 
are no fundamental limitations to inter-clock comparisons reaching 
frequency uncertainties at the 10−21 level, offering new opportunities 
for tests of fundamental physics.

Note added in proof: While performing the work described here, we 
became aware of complementary work in which high measurement 
precision was achieved for simultaneous differential clock comparisons 
between multiple atomic ensembles in vertical 1D lattices separated 
by centimetre-scale distances using a hertz-linewidth clock laser34.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
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butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-021-04349-7.
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92 h. Purple points show fractional frequency instability fitted by the solid 
green line, with the quantum projection noise limit indicated by the dashed 
black line. We attribute the excess instability of the measurement relative to 
quantum projection noise to detection noise. The expected single atomic 
region instability is shown in gold.
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…and what do we fundamentally learn if so?
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Quantum uncertainty relations:  Δq ⋅ Δp ≥
ℏ
2

What are the physical limits of precision?
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Thermodynamic uncertainty relations (TURs):

Var[Θ]
E[Θ]2

⋅ Σ ≥ 2kB

displacement fluctuates because of the presence
of nth[W0] ≈ 1013 phonons. The interferometer
resonantly transduces the differential arm mo-
tion into optical power fluctuations at the anti-
symmetric port, which is sensed by homodyne
detection. (During ordinary operation, these
fluctuations encode the gravitational-wave sig-
nals). In this state, the homodyne photocurrent
fluctuations bear the apparent displacement
dxobs = dx + dximp; here, dx is the physical
motion of the differential arm, which contains
the displacement of the oscillator, and dximp is
the measurement imprecision. The impreci-
sion noise, depicted in Fig. 1B, is

ffiffiffiffiffiffiffiffiffi
Simp
x

p
≈ 2 !

10"20m=
ffiffiffiffiffiffi
Hz

p
around 100 to 200 Hz and is

largely quantum shot noise, suppressed by
~3 dB by injection of squeezed light (12) and
shaped by the response of the signal recycling
cavity, with a secondary contribution from
mechanical dissipation in the mirror coatings
(13). This sensitivity is equivalent tonimp ≡ Simp

x =
2Szpx ≈ 3:5 ! 10"13 phonons for a 10-kg oscilla-
tor at ~150Hz, a record lownumber [Rossi et al.
(9) demonstrated nimp ≈ 10–7] tantamount to
resolving the zero-point motion of the oscillator
with ~125 dB signal to squeezed-shot-noise ra-
tio and comparable to the requirement to feed-
back cool the oscillator to its ground state [nimp ~
1/2nth, for a viscously damped oscillator (14)].
To take advantage of this precision, we ac-

tively stiffened the pendulummode by synthe-
sizing a force proportional to the observed
displacement (i.e.,º W2

fbdxobs) and in-phase
with the motion dx, trapping the pendulum
mode as an oscillator aroundWfb≈ 2p ⋅ 148Hz.
Two additional sources of decoherence plague
this scheme. First, suchmeasurement precision
comes at the expense of additional quantum
back-action on the pendulummode: Radiation

pressure shot noise from the 200 kW intra-
cavity power and the anti-squeezed intracav-
ity field produces motion (15) equivalent to
nba[W0] ≈ 1.0 ⋅ 1012 phonons. However, as long
as the measurement record resolves the quan-
tum back-action at a rate comparable to the
thermal decoherence, active feedback can sup-
press it (9, 14, 16). Second, the feedback of am-
plified imprecision noise leads to an additional
“feedback back-action,”nfb ≈ Q2

0 Wfb=W0ð Þ4nimp

[see section S1 of the supplementary materials
(17)], which increases with the trap frequency.
However, this is partially compensated by the
Wfb/W0 ≈ 300-fold reduction in both the ther-
mal occupation and decay rate of the trapped
oscillator caused by structural damping (5).
To trap and damp the oscillator, we adjust

the feedback control so that dFfb ¼ c"1
fb dxobs,

with a feedback filter c"1
fb º W2

fb þ iWGfb be-
tween 100 and 200 Hz. This is implemented
by careful shaping of the control loop that is
otherwise used to stabilize the interferometer
at its linear operating point. The feedback force
is applied on the mirror electrostatically: Gold
electrodes on the reaction mass (Fig. 1A) are
held at a 400 V bias, and their fringing field
polarizes the dielectric test mass. Control volt-
ages added on interleaved electrodes produce
a proportional force [extraneous force noise
produces <1 phonon of excess occupation on
average, see section S1.1 of the supplementary
materials (17)]. The overall feedback gain is
adjusted so that the system’s effective suscep-
tibility takes the form, ceff W½ (º "W2 þW2

effþ
"

iWGeff W½ (Þ"1=m, of that of an oscillator with fre-

quency Weff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2

0 þW2
fb

q
≈ Wfb ≈ 2p ! 148Hz.

Delays in the feedback loop limit the trap
frequency and cause the oscillator to be in-

trinsically “cold-damped.” In particular, the
phase response of the notch filters used to
prevent excitation of the violin modes of the
suspension (at 500 Hz and harmonics, featur-
ing quality factors ≥109) in conjunction with
the feedback filter leaves the interferometer’s
length control system with a phase margin of
1° for a trap frequency of 148 Hz. Physical delay
in the loop also cold-damps the trapped oscillator
to a quality factor of ≈50 [Fig. 2B, red trace; see
section S1.2 of the supplementary materials (17)
for further details]. The oscillator is damped
further by modifying the imaginary part of the
feedback filter. Figure 2A shows the effective
susceptibilities of the trapped and damped
oscillator so realized. The largest damping rate,
corresponding to aquality factor of≈1, is limited
by the gain margin (≈10–3) of the control loop.
Around the trap frequency, 100 to 200 Hz, ad-
ditional force noise on the oscillator caused by
feedback is dominated by subquantum fluctua-
tions of the squeezed imprecision noise.
The calibrated in-loop signal, depicted in Fig.

2B, shows the apparent displacement fluctua-
tions of the trappedanddampedoscillator (dxobs).
This canbeunderstoodusing a simplemodel [see
section S1 of the supplementary materials (17)],
dxobs ¼ ceff dFth þ dFba " c"1

fb dximp
" #

þ dximp.
It describes the oscillator, characterized by in-
trinsic susceptibility c0, with a displacement
that responds through the feedback-modified
effective susceptibility ceff ¼ c"1

0 þ c"1
fb

" #"1 to
three forces: a frequency-dependent structural
thermal force (dFth), a white quantum mea-
surement back-action force (dFba), and an
additional force noise (ºc"1

fb dximp ) caused
by feedback of imprecision noise through the
feedback filter. These physical displacements
ride on the imprecision noise (dximp) to yield

Whittle et al., Science 372, 1333–1336 (2021) 18 June 2021 2 of 4

Fig. 1. Advanced LIGO
interferometer. (A) Laser
light is split and recombined
at a beam-splitter, forming
a Michelson interferometer.
Its response is shaped
by the Fabry–Pérot cavities
in the arms and the
signal-recycling mirror.
The power-recycling mirror
and injection of squeezed
light enhances the sensitivity.
Inset shows the suspension
system of each of the
four 40-kg mirrors. The final
mass on the forward
chain is the 40-kg mirror,
suspended on fused silica
wires (purple) featuring
a quality factor Q ≈ 8 ∙ 107;
they can be displaced by electrostatic forces caused by voltages applied on electrodes (yellow) etched onto the reaction mass suspended behind it; average adult human
sketched for scale. (B) The displacement sensitivity (red) of the interferometer is 2 ! 10"20m=

ffiffiffiffiffi
Hz

p
at 100 to 200 Hz, where it is largely shot noise (light red), suppressed

by ~3 dB from injection of squeezed vacuum (red) and a combination of extraneous technical noises (gray). Blue band shows the frequency interval in which the pendulummode
is trapped and cooled.
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⟶ SNR ≤
·Σ

2kB

dissipationimprecision

Seifert, Annu. Rev. Condens. Matter Phys. 10 171 (2019)

Horowitz & Gingrich, Nature Phys. 16, 15 (2020)
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a

ATP

ATP
ADP

Pi
ADP

Pi

f f

f

f

1 2 3 (4) ≙ 1

K12 K23 K31

K13K32K21

b K+

K−

Figure 2
Sketch of a molecular motor with two “heads” stepping along a !lamentous track with elementary (or
“repeat”) distance d against an externally applied force f . (a) A three-state model. In state 1, an ATP
molecule can bind to the motor leading to state 2. Subsequent hydrolysis of ATP to ADP and release of the
inorganic phosphate molecule Pi generates a step of the front head leading to state 3. With the release of
ADP, the rear head follows. Thus, the cycle of motor conformations has been closed while the motor has
advanced one step along the track. Thermodynamic consistency requires that each step can occur backward,
however, at typically a much smaller rate. The quantities showing up in the ratio of rates (Equation 12) can
be speci!ed as follows: With α = T ,D, and P denoting the three relevant molecular species, we get dT12 = 1,
dP23 = −1, dD31 = −1, dα

JI = −dα
IJ, and the other dα

IJ = 0. Likewise, for the distance stepped against the force,
we have d23 = d31 = d/2, d12 = 0, and dJI = −dIJ. Specifying the "IJF would require a more detailed model
or determining the thermodynamic potentials from a trajectory of the motor under equilibrium conditions,
i.e., with µT = µD + µP and f = 0 as explained in Figure 1. For a concrete example of a stationary state, we
consider the special case of all backward rates being equal, K21 = K32 = K13 ≡ K−, leading to Ps1 = [K23K31 +
(K31 + K− )K−]/N and its cyclic permutations for Ps2 and P

s
3. The normalization N follows from

Ps1 + Ps2 + Ps3 = 1. (b) Further coarse graining leading to a minimal model with just a forward rate K+ and a
backward rate K− used when introducing the thermodynamic uncertainty relation in Section 5 below.
Abbreviations: ADP, adenosine diphosphate; ATP, adenosine triphosphate.

an effective, higher, temperature caused by the driving (34). In a recent joint experimental and
theoretical study, this effect was systematically explored for a colloidal particle and for DNA hair-
pins driven by stochastically oscillating laser traps (35). This study revealed that there are typ-
ically parameter ranges in which an effective temperature can be meaningfully identi!ed from
a "uctuation-dissipation theorem, whereas in others correlation and response function do not
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Quantum thermodynamics  “coherence” allows higher SNR for given → ·Σ
Ptaszynski,  
Phys. Rev. B 98, 085425 (2018)

Agarwalla & Segal, 
Phys. Rev. B 98, 155438 (2018)

Brandner et al.,  
Phys. Rev. Lett. 120, 090601 (2018)
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T    CQS| ⟩Thermodynamics of clocks
A clock is a machine that converts energy into a sequence of ticks


What are the minimal resources? How efficient can a clock be?


What happens as we scale clocks down to the quantum domain? 2

Here, we combine these aspects and provide a detailed
investigation of the trade-o↵s between accuracy, resolu-
tion, and entropy production for given energy and com-
plexity within the framework of autonomous quantum
clocks [9, 10]. A central tenet for providing these trade-
o↵s is the separation of timekeeping into two separate
processes mentioned above: (i) the irreversible out-of-
equilibrium transitions of the clockwork via interaction
with an environment, resulting in distinguishable events
registered as ‘ticks’, which we model with a decay mech-
anism, and (ii) the internal closed-system (unitary) dy-
namics that provide a clockwork and temporally concen-
trate the population of states from which an irreversible
transition can emerge. That is, the clockwork ensures
that the circumstances that allow for a tick to happen
(e.g., a specific energy level resonant with the out-of-
equilibrium dynamics being highly populated) occur only
within a very narrow time window. Here, we study this
task and the resources required to achieve it. In particu-
lar, as a main result we present an analytical trade-o↵ be-
tween the maximal probability amplitude and temporal
variance for ATPC, on the one hand, and the complexity
of the respective autonomous clockwork achieving it, on
the other. In conjunction with the generic example of a
memoryless out-of-equilibrium process, namely exponen-
tial decay, this allows us to describe trade-o↵s between
accuracy, resolution, entropy production, and clockwork
complexity.

The specific clock model that we consider here consists
of (1) external heat baths as out-of-equilibrium resources,
(2) a quantum system representing the ‘clockwork’, and
(3) an external field that the clockwork can emit energy
(‘ticks’, e.g., photons) into. In Sec. II, we first discuss
the role and choice of the clockwork, and formalise the
task of ATPC. In Sec. III, we then discuss mechanisms
for coupling the clockwork to an equilibrating process
to produce ticks. In Sec. IV we combine the two, to
showcase the limitations set by the irreversible process
and how the complexity of a clockwork can be utilised
to reach the maximal potential of a clock. We continue
in Sec. V with a discussion of the implications and the
relation to other literature on clocks and end with a short
conclusion in Sec. VI.

II. THERMAL MACHINES AND THE
CLOCKWORK

Let us now consider a clockwork in the sense discussed
above, that is, a device that contains a target subsys-
tem, which is to be prepared for an out-of-equilibrium
transition, thus resulting in a ‘tick’. From a thermody-
namic perspective, such a preparation requires work to
be performed on the target, which can be achieved by
a quantum thermal machine. Operating such a machine
in turn requires an out-of-equilibrium resource, which we
here consider to be provided by thermal baths at di↵erent
temperatures, i.e. a thermal gradient. More specifically,
we assume that two independent baths are available, a

Figure 1. Illustration of the clock setup. The flow of heat between

a hot and a cold bath can be utilised by the clockwork in order to

prepare (a subsystem of) the clockwork for an irreversible process.

The signal thus produced can be registered as a ‘tick’ that serves

as a time reference.

hot bath and a cold bath, at temperatures TH and TC,
respectively, where the latter represents the environment.
This setup is depicted in Fig. 1.

This choice is motivated, first, by the general avail-
ability of heat baths. Second, because systems are usu-
ally expected to thermalise (eventually) without external
agency, preparing such heat baths does not require any
temporal information or external control. Consequently,
heat baths allow for transparent bookkeeping of the rel-
evant resources, i.e. of the average amount of entropy
dissipated by the clockwork for each tick.

A specific focus of the analysis performed here lies on
the identification of trade-o↵s between di↵erent figures
of merit for the clock performance for fixed energy in-
put and clock complexity. In principle, the performance
of a given clock also depends on the (di↵erence between
the) temperatures TC and TH. However, since we are
primarily interested in upper bounds on the relevant fig-
ures of merit, we will often concentrate on the case where
the environment temperature is TC = 0. For the sake of
completeness, calculations for general TC can be found
in Appendices B and C.

Our clockwork model then consists of two parts, a d-
dimensional ‘ladder ’ target system (in the simplest case,
a qubit, d = 2) and a machine, which itself has some sub-
structure and couples to the ladder via unitary interac-
tion. This interaction supplies work (which the machine
draws from its coupling to the heat baths) to the ladder,
driving it to its excited states. The ladder in turn couples
to an external field, and thus these excitations eventually
result in ticks (i.e. energy emitted into the field). Here,
we consider a model where only a non-zero population
Ptop(t) of the ‘top level’ — the most highly excited state
of the ladder — can lead to a tick. As a consequence, the
quality of the clockwork depends on the properties of the
particular probability distribution Ptop(t) as a function
of Schrödinger time t. In particular, an ideal clockwork

Need an autonomous framework to ensure fair 
bookkeeping:


• ticks are generated continuously and recorded 
spontaneously in a register


• resources powering the clockwork are time 
independent

Erker, MTM, Silva, Woods, Brunner & Huber, Phys. Rev. X 7, 031022 (2017) 

Milburn, Contemp. Phys. 61, 69 (2019)

Pearson, et al., Erker, Huber & Ares, Phys. Rev. X 11, 021029 (2019) 
Schwarzhans, Lock, Erker, Friis & Huber, Phys. Rev. X 11, 011046 (2021)



T    CQS| ⟩Quantifying performance
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Clockwork
 

 
Resource
 

 
Waste
 
 

τi τi+1

μi = ⟨τi⟩ σ2
i = ⟨(τi − μi)2⟩mean waiting time: variance:

Resolution           (average tick frequency)


Accuracy            (number of ticks before the clock is off by one tick)

ν = μ−1

𝒩 =
μ2

σ2

Assuming clockwork is a renewal process: all  are i.i.d. random variablesτi

Erker, MTM, Silva, Woods, Brunner & Huber, 
Phys. Rev. X 7, 031022 (2017)

c.f. Allan variance  for large σ2
y (T ) ∼

μ
NT

T



T    CQS| ⟩Clocks & counting statistics
Landi, Kewming, MTM & Potts, 
PRX Quantum 5, 020201 (2024)

Mean current:





Current noise/diffusion:


J = lim
t→∞

d
dt

E[N(t)]

D = lim
t→∞

d
dt

Var[N(t)]
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λt
N
(t)

P
(N

)

Jt

Dt

e.g. Poisson process, P(τ) = λe−λτ

τi

Can also consider full counting statistics of the “tick current” I(t) =
dN
dt

Resolution            (average tick frequency)


Accuracy          (number of ticks before the clock is off by one tick)


These definitions work for general (e.g. non-renewal) processes

v = J
𝒩 =

J
D

Silva, Nurgalieva & Wilming, arXiv:2306.01829



T    CQS| ⟩
Thermodynamic uncertainty relation (TUR): accuracy is limited by dissipation 

        

Quantum dynamics allows exponential improvement  


Var[N]
E[N]2

⋅ Σ ≥ 2kB ⟶
t→∞

J2

D
≤

·Σ
2kB

⟹ 𝒩 ≤
Σtick

2kB

𝒩 = e𝒪(Σtick)

Classical precision bounds

Σtick = μ ·Σ

mean tick 
time

entropy 
production rate

Meier, Minoguchi, Sundelin, Apollaro, Erker, 
Gasparinetti & Huber, arXiv:2407.07948

Kinetic uncertainty relation (KUR): accuracy-resolution tradeoff





Quantum dynamics allows quadratic improvement 

J2

D
≤ 𝒜 ⟹ 𝒩ν ≤ 𝒜

𝒩 ≤ ( A
ν )

2

dynamical activity = (# of transitions)/time

Meier, Schwarzhans, Erker & Huber, 
Phys. Rev. Lett. 131, 220201 (2023)

Garrahan, Phys. Rev. E 95, 032134 (2017)

Terlizzi & Baiesi, J. Phys. A 52 02LT03 (2019)

Barato & Seifert, Phys. Rev. Lett. 114, 158101 (2015)

Gingrich et al., Phys. Rev. Lett. 116, 120601 (2016)

Erker et al., Phys. Rev. X 7, 031022 (2017) 

Pearson et al., Phys. Rev. X 11, 021029 (2019)



T    CQS| ⟩Implications for quantum control

[33–35]. This being said, unitary operations generated by
controlled Hamiltonians also appear in more conceptual
areas of quantum theory, e.g., in quantum thermodynamics.
In that context, the ramifications of imperfect timekeeping
have only recently begun to come to light [36–38]. As a
concrete thermodynamic protocol, we consider algorithmic
cooling [39–42], where a series of unitary operations are
used to perform refrigeration. Such protocols can be broken
down into SWAP-inducing interactions enacted between
the energy levels of a thermal machine and the system to be
cooled. In [43], the achievability of this cooling protocol is
shown for the task of cooling a qubit to any desired
temperature given access to an appropriate thermal
machine, whilst bounds on its performance were obtained
in [42].
Theorem 2.—A qubit in a thermal state at temperature βs

with ground state population rs can be asymptotically
cooled to a thermal state with ground state popu-
lation rv∶ 1 ≥ rv > rs ≥ 0 and inverse temperature
βv∶ ∞ > βv > βs ≥ 0 in a protocol controlled by a timer
with a Gaussian tick distribution with mean τ > 0 and
variance σ > 0.
Here is a sketch of the proof. A pair of energy levels of

the thermal machine are chosen, such that the subspace they
form can be thought of as a virtual qubit with inverse
temperature βv∶ βv > βs. The probability that this sub-
space is populated is Pv∶ 0 < Pv < 1, which is less than
unity because the machine may have many levels. To cool

the physical qubit, the agent attempts to generate a SWAP
operation between the virtual and physical qubits by
enacting a Hamiltonian for a time τ using a timer with
finite accuracy N. The imperfect timer dephases this
operation, resulting in the ground state population of the
virtual qubit being only partially swapped with that of the
physical qubit. Attempting to apply n SWAPs recursively,
and assuming the thermal machine can fully relax at each
step, the agent manages to change the ground state
population of the physical qubit to

rðnÞerror ¼ rv − ðrv − rsÞ½1 − Pvð1 − pÞ%n; ð9Þ

where p ¼ 1
2 ð1 − e−π

2=2NÞ appears due to the imperfect

temporal control. Asymptotically as n → ∞, rðnÞerror con-
verges to rv, i.e., the physical qubit converges to a thermal
state with the target temperature βv, regardless of the
control timer’s uncertainty σ. ▪
Whilst imperfect timekeeping is sufficient for an agent to

cool a qubit to a desired temperature, there is a resource
cost in terms of the number of SWAP operations required,
which scales inversely with the accuracy of the timer. We
examine how σ impacts the rate of cooling in this protocol
in [44].
Discussion.—In this Letter, we have shown that Peres’

concern is not only relevant to the foundations of quantum
theory but also to operational tasks such as computation

FIG. 1. For a circuit comprising lt ¼ 1 CNOT per time step as the one in (b), the impact of timekeeping error on average gate fidelity
F̄ ðDÞ is plotted in (a) as the number of gates L increases for different values of clock accuracy N. Inset (c) is the clock accuracy in
logarithmic scaling against the depth m for different numbers of CNOTs per time step, i.e., lt ¼ f1; 5; 25; 100g, given a threshold
average gate fidelity of 0.5 [46]. This shows that the temporal control one has access to greatly impacts the circuit complexity one can
achieve and that this relationship is not linear. In the right panel (d), we present an illustration that visually conveys the setting of
Theorem 1. That is, lt CNOTs per step of an algorithm individually timed by independent clocks following identical tick distributions
leading to independent dephasing at each time step. This results in a global dephasing map whose unitarity we use to bound the
achievable average gate fidelity.

PHYSICAL REVIEW LETTERS 131, 160204 (2023)

160204-4

Generic circuit with  ill-timed CNOT gates has an average fidelity   L ℱ ≤ ( 1
2 [1 + e−π2/𝒩])

L
2

Xuereb, Meier, Erker, MTM & Huber, Phys. Rev. Lett. 131, 160204 (2023)

Ut |ψ⟩ → ∫ dt p(t) Ut |ψ⟩⟨ψ |U†
t

See also:  
Xuereb, Debarba, Huber & Erker, arXiv:2311.14561

Meier, Huber, Erker & Xuereb, arXiv:2402.00111



T    CQS| ⟩Stochastic time estimation

What if we can observe more than one type of “tick” event?
How to optimally (i.e. accurately & precisely) estimate time using these random events?



T    CQS| ⟩Markovian jump processes
               ∂t pμ =

d

∑
σ=1

Lμσ pσ Lμσ = {
Rμσ (μ ≠ σ)
−Γσ (μ = σ)

Γσ =
d

∑
μ=1

Rμσ

prob. to occupy state σ jump rate σ → μescape rate from σ

An observer lacking a clock can measure the ordered sequence

σ = σ0 → σ1 → ⋯ → σN

P(σ, t | t) = e−ΓσN(t−tN)
N−1

∏
j=0

π(σj+1 |σj)W(tj+1 − tj |σj)pss
σ0

𝖫pss = 0W(τ |σ) = Γσe−Γστπ(μ |σ) =
Rμσ

Γσ

P(σ | t) = ∫
t

0
dtN ⋯∫

t2

0
dt1 P(σ, t | t)

t1 t2 tN



T    CQS| ⟩Optimal time estimation
A time estimator  is a function of the sequence 


An accurate estimator is unbiased: 


A precise estimator has small variance 


An efficient estimator is unbiased and saturates the Cramér-Rao bound





 is the Fisher information

Θ(σ) σ = σ0 → σ1 → ⋯ → σN

E[Θ] = ∑
σ

P(σ | t)Θ(σ) = t

Var[Θ] = E[Θ2] − E[Θ]2

Var[Θ]ℱt ≥ 1

ℱt = E [( ∂ ln P(σ | t)
∂t )

2

]



T    CQS| ⟩Mean residual time
,                  lim

t→∞
tℱt = 𝒯−1 𝒯 =

d

∑
σ=1

pss
σ

Γσ
Fisher information in the saddle-point approximation:

The mean residual time  controls the optimal 
asymptotic rate of information gain about time

𝒯 E[Θ]2

Var[Θ]
≤ t𝒯−1 (unbiased estimator 

& long times)

𝒯 = E[τ0] = ∑
σ

pss
σ ∫

∞

0
dτ W(τ |σ)τ

= ∑
σ

pss
σ Γ−1

σ

Prech, Landi, Meier, Nurgalieva, Potts, Silva & MTM, arXiv:2406.19450



T    CQS| ⟩

Mean residual time:  . 


Mean waiting time:   , where  is the dynamical activity 

Inspection paradox!  


        

E[τ0] = 𝒯 = ∑
σ

pss
σ Γ−1

σ

E[τj] = 𝒜−1 𝒜 = ∑
μ,σ

pss
σ Rμσ = ∑

σ

pss
σ Γσ

𝒯 ≥ 𝒜−1

Inspection paradox

 is the arithmetic mean of 

 is the harmonic mean of 

𝒯 Γ−1
σ

𝒜−1 Γ−1
σ



T    CQS| ⟩Clock uncertainty relation
 Var[Θ]ℱt ≥ ( ∂E[Θ]

∂t )
2

⇒  
(∂tE[Θ])2

Var[Θ]/t
≡ 𝒮 ≤ 𝒯−1

Bounds steady-state fluctuations of arbitrary observables  by measure of activity 


Non-trivial bound if , e.g. counting observables 


Tighter than the KUR since  (and always saturable)


Θ(σ) 𝒯−1

E[Θ] ∼ t Θ(σ) = ∑
μ,σ

wμσNμσ

𝒯−1 ≤ 𝒜

# of jumps σ → μ

arbitrary (real) weights

c=1
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Prech, Landi, Meier, Nurgalieva, Potts, Silva & MTM, arXiv:2406.19450

General CRB:



T    CQS| ⟩

Linear counting estimator 


Mean current:  


Current noise: 


Best unbiased linear estimator (BLUE): minimise  subject to the unbiased constraint 


Equivalent to maximising the SNR , since  is invariant under rescaling 


(One) solution is          so the CUR can always be saturated!

Θ = ∑
μ,σ

wμσNμσ

J = lim
t→∞

d
dt

E[Θ] = ∑
μ,σ

wμσJμσ ≡ ⃗w ⋅ ⃗J

D = lim
t→∞

d
dt

Var[Θ] = ⃗w ⋅ 𝔻 ⋅ ⃗w

D J = 1

𝒮 =
( ⃗w ⋅ ⃗J)2

⃗w ⋅ 𝔻 ⋅ ⃗w
𝒮 ⃗w → r ⃗w

wμσ =
1
Γσ

⇒ 𝒮 = 𝒯−1

Best unbiased linear estimator
# of jumps σ → μ

arbitrary (real) weights

0 5 10 15 20 25 30
0
10
20
30
40

t/

Θ
/

Prech, Landi, Meier, Nurgalieva, Potts, Silva & MTM, arXiv:2406.19450



T    CQS| ⟩CUR is the tightest precision bound 
far from equilibrium

c=1
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𝒮 ≤ 𝒞SNR cost
 (TUR)𝒞 =

·Σ
2kB

 (KUR)𝒞 = 𝒜

 (CUR)𝒞 = 𝒯−1

1

2

34

5

r1

e−Δr1

 is the measure of activity that controls steady-state fluctuations far from equilibrium𝒯−1

Prech, Landi, Meier, Nurgalieva, Potts, Silva & MTM, arXiv:2406.19450



T    CQS| ⟩CUR is the tightest accuracy-
resolution tradeoff

Accuracy-resolution tradeof

1

2

34

5

Γ1

Γ2

Γ3

Γ4

Γ5

𝒩ν ≤ 𝒯−1

Prech, Landi, Meier, Nurgalieva, Potts, Silva & MTM, arXiv:2406.19450

BLUE counts every transition


Erlang estimator counts only one transition.

e.g. Erlang clock (  in the picture below)
d = 5

9

FIG. 5. Asymptotic signal-to-noise ratio S of the observable
⇥(�, ⌧) =

PN
j=0 �� j⌧ j computed for 104 randomly generated, fully

connected stochastic networks (see Appendix H for details of the
calculation). We use the sampling procedure described in the cap-
tion of Fig. 4, with connectivity c = 1 and dimension d = 10.

where F�[P(�|t, �)] is the Fisher information for the distri-
bution P(�|t, �), obtained by marginalising Eq. (32) over the
jump times t (or, equivalently, by shifting L ! (1 + �)L in
Eq. (5)). This yields a tighter bound because of the data re-
finement inequality for the Fisher information [73]

F�[P(�|t, �)]  F�[P(�, t|t, �)]. (39)

Therefore, the KUR (37) cannot be saturated unless Ineq. (39)
is saturated in the limit �! 0.

In fact, we show in Appendix H that

P(�|t, �) = P
�
�|(1 + �)t

�
, (40)

i.e. for observables that do not depend on the jump times t,
shifting the rates L ! (1 + �)L is equivalent to rescaling time
as t ! (1 + �)t. It follows that

lim
�!0
F�[P(�|t, �)] = t2

Ft, (41)

where Ft ⌘ Ft[P(�|t)] is the Fisher information for time es-
timation, defined in Eq. (8). As a consequence, for � ! 0,
Ineq. (38) reduces to the CRB (7) for time estimation, which
in turn implies the CUR. The fact that the CUR is tighter than
the KUR can thus be seen as a consequence of the data refine-
ment inequality (39). Furthermore, combining Eqs. (35), (39),
and (41), we deduce an upper bound on the Fisher information
for stochastic time estimation

tFt  A, (42)

which holds for all t > 0. This bound is generally loose but
it is saturated at short times, limt!0 tFt = A, as discussed in
Sec. II D.

Conversely, the KUR does not hold whenever the second
term on the right-hand side of Eq. (36) is non-zero. This is
the case for generic observables that depend explicitly on the
waiting times, which are measurable only for observers who
have access to an external clock. A simple example of such
an observable is the sum of waiting times, ⇥(⌧) =

PN
j=0 ⌧ j = t,

Estimator Weights SNR Resolution Accuracy

BLUE wµ� = ��1
� S = T �1 ⌫ = A N = 1/AT

Erlang w1d = J�1
1d S = T �1 ⌫ = A/d N = d/AT

Uniform wµ� = A�1
S  T

�1 ⌫ = A N = S/A

TABLE II. Three unbiased time estimators that are counting observ-
ables of the form ⇥ = ~w · ~N. The properties of the Erlang estimator
quoted above hold only for ring clocks, with arbitrary escape rates
but only clockwise jumps allowed (see Appendix I).

equal to the total time t. Its variance therefore vanishes, which
is nonetheless consistent with the CRB (34) because, from
Eq. (36), we have @�E[⇥|t, �]�=0 = t � t = 0. A non-trivial
observable whose fluctuations are not bounded by the KUR is
⇥(�, ⌧) =

PN
j=0 �� j⌧ j. We demonstrate this by computing its

SNR for a sample of randomly generated stochastic networks,
as shown in Fig. 5. In the vast majority of cases, we see that
S � A, strongly violating the KUR.

Finally, one may wonder whether it is possible to formu-
late the time estimation problem for this more general class of
observables that depend explicitly on the waiting times. In-
terestingly, the CRB for time estimation does not exist in this
case: the support of the distribution P(�, t|t) depends on t and
so the corresponding Fisher information Ft[P(�, t|t)] cannot
be defined [48]. Naturally, therefore, the problem of stochas-
tic time estimation is only well posed if a clock is not already
available to record the jump times t, so that only the informa-
tion in the marginal distribution P(�|t) is accessible.

IV. CLOCK PERFORMANCE BEYOND PRECISION

So far we have formulated timekeeping as a local param-
eter estimation problem, where performance is quantified by
the signal-to-noise ratio (SNR) and bounded by the Fisher in-
formation. In this section, we discuss other measures of clock
performance and demonstrate their connection to the local es-
timation framework used thus far. Specifically, we consider
the resolution (Sec. IV A) and accuracy (Sec. IV B) parame-
ters introduced in Ref. [1] and studied widely in the recent
literature on quantum clocks [4–8, 15, 74]. Finally, we turn
to the Allan variance [75] (Sec. IV C), a standard measure of
frequency stability used to assess atomic clocks at the preci-
sion frontier [76]. In the following, we define each of these
performance measures for generic counting estimators, using
the specific estimators summarised in Table II as examples.

A. Resolution

A clock establishes a temporal order by associating a time
estimate to each event. Two events at the same location can
be discriminated only if they are assigned di↵erent time esti-
mates. High-resolution clocks are those that can discriminate
events that are closely separated in time. Returning to our
castaway example, counting waves lapping on a beach yields
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FIG. 5. Asymptotic signal-to-noise ratio S of the observable
⇥(�, ⌧) =

PN
j=0 �� j⌧ j computed for 104 randomly generated, fully

connected stochastic networks (see Appendix H for details of the
calculation). We use the sampling procedure described in the cap-
tion of Fig. 4, with connectivity c = 1 and dimension d = 10.
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as t ! (1 + �)t. It follows that

lim
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Ft, (41)

where Ft ⌘ Ft[P(�|t)] is the Fisher information for time es-
timation, defined in Eq. (8). As a consequence, for � ! 0,
Ineq. (38) reduces to the CRB (7) for time estimation, which
in turn implies the CUR. The fact that the CUR is tighter than
the KUR can thus be seen as a consequence of the data refine-
ment inequality (39). Furthermore, combining Eqs. (35), (39),
and (41), we deduce an upper bound on the Fisher information
for stochastic time estimation

tFt  A, (42)

which holds for all t > 0. This bound is generally loose but
it is saturated at short times, limt!0 tFt = A, as discussed in
Sec. II D.

Conversely, the KUR does not hold whenever the second
term on the right-hand side of Eq. (36) is non-zero. This is
the case for generic observables that depend explicitly on the
waiting times, which are measurable only for observers who
have access to an external clock. A simple example of such
an observable is the sum of waiting times, ⇥(⌧) =

PN
j=0 ⌧ j = t,
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BLUE wµ� = ��1
� S = T �1 ⌫ = A N = 1/AT

Erlang w1d = J�1
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Uniform wµ� = A�1
S  T

�1 ⌫ = A N = S/A

TABLE II. Three unbiased time estimators that are counting observ-
ables of the form ⇥ = ~w · ~N. The properties of the Erlang estimator
quoted above hold only for ring clocks, with arbitrary escape rates
but only clockwise jumps allowed (see Appendix I).

equal to the total time t. Its variance therefore vanishes, which
is nonetheless consistent with the CRB (34) because, from
Eq. (36), we have @�E[⇥|t, �]�=0 = t � t = 0. A non-trivial
observable whose fluctuations are not bounded by the KUR is
⇥(�, ⌧) =

PN
j=0 �� j⌧ j. We demonstrate this by computing its

SNR for a sample of randomly generated stochastic networks,
as shown in Fig. 5. In the vast majority of cases, we see that
S � A, strongly violating the KUR.

Finally, one may wonder whether it is possible to formu-
late the time estimation problem for this more general class of
observables that depend explicitly on the waiting times. In-
terestingly, the CRB for time estimation does not exist in this
case: the support of the distribution P(�, t|t) depends on t and
so the corresponding Fisher information Ft[P(�, t|t)] cannot
be defined [48]. Naturally, therefore, the problem of stochas-
tic time estimation is only well posed if a clock is not already
available to record the jump times t, so that only the informa-
tion in the marginal distribution P(�|t) is accessible.

IV. CLOCK PERFORMANCE BEYOND PRECISION

So far we have formulated timekeeping as a local param-
eter estimation problem, where performance is quantified by
the signal-to-noise ratio (SNR) and bounded by the Fisher in-
formation. In this section, we discuss other measures of clock
performance and demonstrate their connection to the local es-
timation framework used thus far. Specifically, we consider
the resolution (Sec. IV A) and accuracy (Sec. IV B) parame-
ters introduced in Ref. [1] and studied widely in the recent
literature on quantum clocks [4–8, 15, 74]. Finally, we turn
to the Allan variance [75] (Sec. IV C), a standard measure of
frequency stability used to assess atomic clocks at the preci-
sion frontier [76]. In the following, we define each of these
performance measures for generic counting estimators, using
the specific estimators summarised in Table II as examples.

A. Resolution

A clock establishes a temporal order by associating a time
estimate to each event. Two events at the same location can
be discriminated only if they are assigned di↵erent time esti-
mates. High-resolution clocks are those that can discriminate
events that are closely separated in time. Returning to our
castaway example, counting waves lapping on a beach yields
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T    CQS| ⟩Summary
•Clock uncertainty relation : a kinetic precision bound that is always saturable


•Mean residual time  as a useful measure of activity in stochastic thermodynamics?


•Optimal time estimator has interesting features:

•  Weights each jump by its mean waiting time (intuitive)

•  Is time-reversal invariant (surprising)

•  Has delta-correlated fluctuations (very surprising!)


•Signatures of quantum/non-Markov dynamics? Quantum clock precision?
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T    CQS| ⟩
Thermodynamic and kinetic constraints on clocks: 

•accurate clocks dissipate a lot of energy


• tradeoff between entropy production, accuracy, and resolution

By measuring time, we 
are accelerating the 
heat death of the 
Universe

Maybe we should 
stop measuring time!

So what? 

• Important when extreme precision (e.g. quantum computation, fundamental physics) 
or low dissipation (e.g. space applications) is important


•Evidence for extreme (e.g. exponential) quantum precision enhancement


•What is time? Time is what a 
clock measures!

Coming soon: 

•Observing these tradeoffs in electronic devices


• Implications for thermodynamics of other continuous measurements

Big picture
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