Controllability of Schrödinger equations and application to quantum rotors

Eugenio Pozzoli (CNRS, IRMAR, Université de Rennes, France)

24-26 February 2025, Dijon - Winter school on BEC

Controllability of finite-dimensional Schrödinger equations
Spectral conditions and resonant control
Controllability of ∞-dimensional Schrödinger equations

Controllability of finite-dimensional Schrödinger equations

- 1 An algebraic condition for controllability
- 2 And its proof
- 3 An algebraic condition for small-time controllability
- 4 Small-time controllability of scalar-input systems

1 An algebraic condition for controllability

2 And its proof

3 An algebraic condition for small-time controllability

4 Small-time controllability of scalar-input systems

Controlled quantum evolution for the state $\psi(t) \in S^N = \{\psi \in \mathbb{C}^N \mid |\psi| = 1\}$ (it has real dimension 2N - 1) $i \frac{d}{dt} \psi(t) = \left(H_0 + \sum_{j=1}^m u_j(t)H_j\right) \psi(t), \quad \psi(t = 0) = \psi_0 \in S^N.$

Controlled quantum evolution for the state $\psi(t) \in S^N = \{\psi \in \mathbb{C}^N \mid |\psi| = 1\}$ (it has real dimension 2N - 1)

$$i\frac{d}{dt}\psi(t) = \left(H_0 + \sum_{j=1}^m u_j(t)H_j\right)\psi(t), \quad \psi(t=0) = \psi_0 \in S^N.$$

• The generators: H_0 (the drift), $H_1, ..., H_m$ (the interactions), Hermitian matrices on $\mathcal{H} = \mathbb{C}^N$: $H_j^* = H_j$. Alternatively, $(iH_j)^* = -iH_j$, i.e. $H_j \in \mathfrak{u}(N)$. (It has real dim. N^2)

Controlled quantum evolution for the state $\psi(t) \in S^N = \{\psi \in \mathbb{C}^N \mid |\psi| = 1\}$ (it has real dimension 2N - 1)

$$i\frac{d}{dt}\psi(t) = \left(H_0 + \sum_{j=1}^m u_j(t)H_j\right)\psi(t), \quad \psi(t=0) = \psi_0 \in S^N.$$

- The generators: H_0 (the drift), $H_1, ..., H_m$ (the interactions), Hermitian matrices on $\mathcal{H} = \mathbb{C}^N$: $H_j^* = H_j$. Alternatively, $(iH_j)^* = -iH_j$, i.e. $H_j \in \mathfrak{u}(N)$. (It has real dim. N^2)
- **The evolutions**: e^{itH_j} , $t \in \mathbb{R}$, **unitary matrices** on $\mathcal{H} = \mathbb{C}^N$: $(e^{itH_j})^* = (e^{itH_j})^{-1} = e^{-itH_j}$. I.e., $e^{itH_j} \in U(N)$. In particular, $|e^{itH_j}\psi| = |\psi| = 1$.

Controlled quantum evolution for the state $\psi(t) \in S^N = \{\psi \in \mathbb{C}^N \mid |\psi| = 1\}$ (it has real dimension 2N - 1)

$$i\frac{d}{dt}\psi(t) = \left(H_0 + \sum_{j=1}^m u_j(t)H_j\right)\psi(t), \quad \psi(t=0) = \psi_0 \in S^N.$$

- The generators: H_0 (the drift), $H_1, ..., H_m$ (the interactions), Hermitian matrices on $\mathcal{H} = \mathbb{C}^N$: $H_j^* = H_j$. Alternatively, $(iH_j)^* = -iH_j$, i.e. $H_j \in \mathfrak{u}(N)$. (It has real dim. N^2)
- **The evolutions**: e^{itH_j} , $t \in \mathbb{R}$, **unitary matrices** on $\mathcal{H} = \mathbb{C}^N$: $(e^{itH_j})^* = (e^{itH_j})^{-1} = e^{-itH_j}$. I.e., $e^{itH_j} \in U(N)$. In particular, $|e^{itH_j}\psi| = |\psi| = 1$.

Controlled quantum evolution for the propagator $U \in U(N)$:

$$i\frac{d}{dt}U(t) = \left(H_0 + \sum_{j=1}^m u_j(t)H_j\right)U(t), \quad U(t=0) = I.$$

3 of 20

The controllability problem

- To every initial state ψ₀ and *control function* u : [0, T] → ℝ^m, we associate the wavefunction ψ(t, u, ψ₀) at time t ∈ [0, T], that is, the solution of the ODE.
- E.g., if *u* is piecewise constant, then

$$\psi(t, u, \psi_0) = e^{i(t - \sum_{j=1}^k t_j)(H_0 + \sum_{j=1}^m u_j(t_k)H_j)} \dots e^{it_1(H_0 + \sum_{j=1}^m u_j(t_1)H_j)} \psi_0.$$

The controllability problem

Given $\psi_0, \psi_1 \in S^n$, find $u : [0, T] \to R^m$ such that $\psi(T, u, \psi_0) = \psi_1$.

The controllability problem

- To every initial state ψ₀ and *control function* u : [0, T] → ℝ^m, we associate the wavefunction ψ(t, u, ψ₀) at time t ∈ [0, T], that is, the solution of the ODE.
- E.g., if *u* is piecewise constant, then

$$\psi(t, u, \psi_0) = e^{i(t - \sum_{j=1}^k t_j)(H_0 + \sum_{j=1}^m u_j(t_k)H_j)} \dots e^{it_1(H_0 + \sum_{j=1}^m u_j(t_1)H_j)} \psi_0.$$

The controllability problem

Given $\psi_0, \psi_1 \in S^n$, find $u : [0, T] \to R^m$ such that $\psi(T, u, \psi_0) = \psi_1$.

The approximate controllability problem

Given $\psi_0, \psi_1 \in S^n$, and an error $\varepsilon > 0$, find $u : [0, T] \to R^m$ such that $|\psi(T, u, \psi_0) - \psi_1| < \varepsilon$.

We say that the equation is (approximately) controllable if the (approximate) controllability problem is solvable for every $\psi_0, \psi_1 \in S^n$.

4 of 20

Lie algebras

The vector space of anti-Hermitian (traceless) $N \times N$ complex matrices $\mathfrak{u}(N)$ ($\mathfrak{su}(N)$) is a **Lie algebra**: if $A, B \in \mathfrak{u}(n)$, then $[A, B] := AB - BA \in \mathfrak{u}(N)$. Given $A_1, \ldots, A_m \in \mathfrak{u}(N)$, we introduce

$$\operatorname{Lie}\{A_1,\ldots,A_m\} \subset \mathfrak{u}(N)$$

defined as the smallest vector space containing A_1, \ldots, A_m , closed under commutator:

$$\mathcal{C}, \mathcal{D} \in \operatorname{Lie}\{A_1, \dots, A_m\} \Rightarrow [\mathcal{C}, \mathcal{D}] \mathrel{\mathop:}= \mathcal{C}\mathcal{D} - \mathcal{D}\mathcal{C} \in \operatorname{Lie}\{A_1, \dots, A_m\}.$$

Lie algebras

The vector space of anti-Hermitian (traceless) $N \times N$ complex matrices $\mathfrak{u}(N)$ ($\mathfrak{su}(N)$) is a **Lie algebra**: if $A, B \in \mathfrak{u}(n)$, then $[A, B] := AB - BA \in \mathfrak{u}(N)$. Given $A_1, \ldots, A_m \in \mathfrak{u}(N)$, we introduce

$$\operatorname{Lie}\{A_1,\ldots,A_m\} \subset \mathfrak{u}(N)$$

defined as the smallest vector space containing A_1, \ldots, A_m , closed under commutator:

$$\mathcal{C}, \mathcal{D} \in \operatorname{Lie}\{A_1, \ldots, A_m\} \Rightarrow [\mathcal{C}, \mathcal{D}] := \mathcal{C}\mathcal{D} - \mathcal{D}\mathcal{C} \in \operatorname{Lie}\{A_1, \ldots, A_m\}.$$

Example: The Pauli matrices

$$\sigma_{x} = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}, \quad \sigma_{y} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{z} = \begin{pmatrix} -i & 0 \\ 0 & i \end{pmatrix},$$

form a basis of $\mathfrak{su}(2).$ They satisfy the commutation relations

$$[\sigma_z, \sigma_x] = 2\sigma_y, \quad [\sigma_y, \sigma_z] = 2\sigma_x, \quad [\sigma_x, \sigma_y] = 2\sigma_z.$$

A criterium for controllability

Theorem

The Schrödinger equation for the propagator is controllable iff $\text{Lie}\{iH_0,\ldots,iH_m\} = \mathfrak{u}(N)$. In particular, if $\text{Lie}\{iH_0,\ldots,iH_m\} = \mathfrak{u}(N)$ the Schrödinger equation for the state is controllable.

¹Jurdjevic, Sussmann; Control Systems on Lie Groups. J. Diff. Eq. 12, 313-329 (1972)

²Albertini, D'Alessandro; Notions of Controllability for Quantum Mechanical Systems. Proceedings of the 40th IEEE Conference on Decision and Control (2001) 6 of 20

A criterium for controllability

Theorem

The Schrödinger equation for the propagator is controllable iff $\text{Lie}\{iH_0, \ldots, iH_m\} = \mathfrak{u}(N)$. In particular, if $\text{Lie}\{iH_0, \ldots, iH_m\} = \mathfrak{u}(N)$ the Schrödinger equation for the state is controllable.

In the rest of this lecture, we prove a weaker version, namely: if $\text{Lie}\{iH_0,\ldots,iH_m\} = \mathfrak{u}(N)$, the eq. for the state is approx. controllable.

¹Jurdjevic, Sussmann; Control Systems on Lie Groups. J. Diff. Eq. 12, 313-329 (1972)

²Albertini, D'Alessandro; Notions of Controllability for Quantum Mechanical Systems. Proceedings of the 40th IEEE Conference on Decision and Control (2001) 6 of 20

A criterium for controllability

Theorem

The Schrödinger equation for the propagator is controllable iff $\text{Lie}\{iH_0, \ldots, iH_m\} = \mathfrak{u}(N)$. In particular, if $\text{Lie}\{iH_0, \ldots, iH_m\} = \mathfrak{u}(N)$ the Schrödinger equation for the state is controllable.

In the rest of this lecture, we prove a weaker version, namely: if $\text{Lie}\{iH_0,\ldots,iH_m\} = \mathfrak{u}(N)$, the eq. for the state is approx. controllable.

- The result (for the propagator) is true more in general¹ for any compact connected Lie group *G*, which in this case is *U*(*n*).
- The converse statement (for the state) is also true² when N is odd (with su(N) instead of u(N)), but not when N is even (there exist proper subgroups of SU(N) acting transitively on the sphere S^N).

¹Jurdjevic, Sussmann; Control Systems on Lie Groups. J. Diff. Eq. 12, 313-329 (1972)

²Albertini, D'Alessandro; Notions of Controllability for Quantum Mechanical Systems. Proceedings of the 40th IEEE Conference on Decision and Control (2001)

We show that:

 For any ψ₀, ψ₁ ∈ S^N, there exists U ∈ U(N) such that Uψ₀ = ψ₁ (i.e., the action of U(N) on S^N is *transitive*). We show that:

- For any ψ₀, ψ₁ ∈ S^N, there exists U ∈ U(N) such that Uψ₀ = ψ₁ (i.e., the action of U(N) on S^N is *transitive*).
- For any U ∈ U(n) there exists A ∈ u(n) such that U = e^A (i.e., the exponential map exp : u(N) → U(N) is surjective).

We show that:

- For any ψ₀, ψ₁ ∈ S^N, there exists U ∈ U(N) such that Uψ₀ = ψ₁ (i.e., the action of U(N) on S^N is *transitive*).
- For any U ∈ U(n) there exists A ∈ u(n) such that U = e^A (i.e., the exponential map exp : u(N) → U(N) is *surjective*).
- For any A ∈ u(n), we can approximately control the system from ψ₀ towards e^Aψ₀.

2 And its proof

3 An algebraic condition for small-time controllability

4 Small-time controllability of scalar-input systems

Given ψ_0 , complete it to an orthonormal basis $\{\psi_0, v_2, \ldots, v_N\}$ of \mathbb{C}^N .

Given $\psi_0,$ complete it to an orthonormal basis $\{\psi_0,v_2,\ldots,v_N\}$ of $\mathbb{C}^N.$ The matrix made of columns

$$V = (\psi_0, v_2, \ldots, v_N) \in U(N)$$

and is such that $Ve_1 = \psi_0$.

Given ψ_0 , complete it to an orthonormal basis $\{\psi_0, v_2, \ldots, v_N\}$ of \mathbb{C}^N . The matrix made of columns

$$V = (\psi_0, v_2, \ldots, v_N) \in U(N)$$

and is such that $Ve_1 = \psi_0$. In the same way, we can construct $W \in U(N)$ such that $We_1 = \psi_1$.

Given ψ_0 , complete it to an orthonormal basis $\{\psi_0, v_2, \ldots, v_N\}$ of \mathbb{C}^N . The matrix made of columns

$$V = (\psi_0, v_2, \ldots, v_N) \in U(N)$$

and is such that $Ve_1 = \psi_0$. In the same way, we can construct $W \in U(N)$ such that $We_1 = \psi_1$. Hence, $U := WV^* \in U(N)$ is such that

$$U\psi_0 = WV^*\psi_0 = We_1 = \psi_1.$$

By the spectral theorem for normal matrices, diagonalize $U = VD_UV^*$, where $V \in U(N)$ and

 $D_U = \operatorname{diag}(e^{i\theta_1}, \ldots, e^{i\theta_N}), \quad \theta_i \in \mathbb{R}.$

By the spectral theorem for normal matrices, diagonalize $U = VD_UV^*$, where $V \in U(N)$ and

$$D_U = \operatorname{diag}(e^{i\theta_1}, \ldots, e^{i\theta_N}), \quad \theta_i \in \mathbb{R}.$$

Notice that

$$D_U = \exp(D_A), \quad D_A = \operatorname{diag}(i\theta_1, \ldots, i\theta_N).$$

By the spectral theorem for normal matrices, diagonalize $U = VD_UV^*$, where $V \in U(N)$ and

$$D_U = \operatorname{diag}(e^{i\theta_1}, \ldots, e^{i\theta_N}), \quad \theta_i \in \mathbb{R}.$$

Notice that

$$D_U = \exp(D_A), \quad D_A = \operatorname{diag}(i\theta_1, \dots, i\theta_N).$$

Then,

$$A:=VD_AV^*\in\mathfrak{u}(N),\quad e^A=U.$$

Recurrent vector fields

Flow of a vector field

Given a smooth vector field $f : M \to TM$ we denote by ϕ_f^t its flow at time t, that is, $x(t) := \phi_f^t(x_0)$ solves the ODE

$$\frac{d}{dt}x(t) = f(x(t)), \quad x(0) = x_0.$$

Recurrent vector fields

Flow of a vector field

Given a smooth vector field $f : M \to TM$ we denote by ϕ_f^t its flow at time t, that is, $x(t) := \phi_f^t(x_0)$ solves the ODE

$$\frac{d}{dt}x(t) = f(x(t)), \quad x(0) = x_0.$$

Recurrent vector field (e.g., periodic vector fields)

A vector field $f : M \to TM$ is recurrent if for every $x \in M$, ngbhd V_x , and time t > 0, there exists $T \ge t$ such that $\phi_f^T(V_x) \cap V_x \neq \emptyset$.

Recurrent vector fields

Flow of a vector field

Given a smooth vector field $f : M \to TM$ we denote by ϕ_f^t its flow at time t, that is, $x(t) := \phi_f^t(x_0)$ solves the ODE

$$\frac{d}{dt}x(t) = f(x(t)), \quad x(0) = x_0.$$

Recurrent vector field (e.g., periodic vector fields)

A vector field $f : M \to TM$ is recurrent if for every $x \in M$, ngbhd V_x , and time t > 0, there exists $T \ge t$ such that $\phi_f^T(V_x) \cap V_x \neq \emptyset$.

Lemma 1

If a vector field f is recurrent, then for every t > 0,

$$\phi_f^{-t}(x_0) \in \overline{\{\phi_f^s(x_0), s \ge 0\}}.$$

By recurrence, there exists $s_k \uparrow \infty$ such that $\phi_f^{s_k}(\phi_f^{-t}(x_0)) \to \phi_f^{-t}(x_0)$. 10 of 20

Poincaré's Theorem

Let *M* be compact with finite volume $vol(M) < \infty$. If the flow of a vector field *f* preserves the volumes, the vector field is recurrent.

Poincaré's Theorem

Let *M* be compact with finite volume $vol(M) < \infty$. If the flow of a vector field *f* preserves the volumes, the vector field is recurrent.

Let $x \in M, V_x, t > 0$. Consider the sets

 $\phi_f^{nt}(V_x), n \in \mathbb{N}.$

Poincaré's Theorem

Let *M* be compact with finite volume $vol(M) < \infty$. If the flow of a vector field *f* preserves the volumes, the vector field is recurrent.

Let $x \in M$, V_x , t > 0. Consider the sets

 $\phi_f^{nt}(V_x), n \in \mathbb{N}.$

Since the flow preserves the volume, and the manifold has finite volume, it follows that there exist $n, m \in \mathbb{N}, n > m$, such that

 $\phi_f^{nt}(V_x) \cap \phi_f^{mt}(V_x) \neq \emptyset.$

Poincaré's Theorem

Let *M* be compact with finite volume $vol(M) < \infty$. If the flow of a vector field *f* preserves the volumes, the vector field is recurrent.

Let $x \in M, V_x, t > 0$. Consider the sets

 $\phi_f^{nt}(V_x), n \in \mathbb{N}.$

Since the flow preserves the volume, and the manifold has finite volume, it follows that there exist $n, m \in \mathbb{N}, n > m$, such that

$$\phi_f^{nt}(V_x) \cap \phi_f^{mt}(V_x) \neq \emptyset.$$

This implies (by applying ϕ_f^{-mt})

$$\phi_f^{(n-m)t}(V_x) \cap V_x \neq \emptyset.$$

Since $(n - m)t \ge t$, the proof is concluded.

Schrödinger flows are volume preserving

• Given $A \in \mathfrak{u}(N)$, the flow e^{tA} preserves the volume:

$$\operatorname{vol}(e^{tA}(V)) = \int_{e^{tA}(V)} d\psi \underbrace{=}_{\phi = e^{tA}\psi} \int_{V} \underbrace{|\det e^{-tA}|}_{=1} d\phi = \int_{V} d\phi = \operatorname{vol}(V).$$

Schrödinger flows are volume preserving

• Given $A \in \mathfrak{u}(N)$, the flow e^{tA} preserves the volume:

$$\operatorname{vol}(e^{tA}(V)) = \int_{e^{tA}(V)} d\psi \underbrace{=}_{\phi = e^{tA}\psi} \int_{V} \underbrace{|\det e^{-tA}|}_{=1} d\phi = \int_{V} d\phi = \operatorname{vol}(V).$$

 Since the sphere S^N is compact and of finite volume, Poincaré Theorem implies that the vector field ψ → Aψ is recurrent.

Schrödinger flows are volume preserving

• Given $A \in \mathfrak{u}(N)$, the flow e^{tA} preserves the volume:

$$\operatorname{vol}(e^{tA}(V)) = \int_{e^{tA}(V)} d\psi \underbrace{=}_{\phi = e^{tA}\psi} \int_{V} \underbrace{|\det e^{-tA}|}_{=1} d\phi = \int_{V} d\phi = \operatorname{vol}(V).$$

- Since the sphere S^N is compact and of finite volume, Poincaré Theorem implies that the vector field ψ → Aψ is recurrent.
- Lemma 1 implies that for every $\psi \in S^N$, t > 0, we can approximately reach the state $e^{-itH_0}\psi$.

How to reach the flow of Lie brackets?

Lemma 2

For every A, B matrices, we have

$$\left(e^{\frac{-A}{sn}}e^{-sB}e^{\frac{A}{sn}}e^{sB}\right)^n \xrightarrow[n \to \infty]{} \exp\left(-\frac{A}{s} + e^{-sB}\frac{A}{s}e^{sB}\right) \xrightarrow[s \to 0]{} e^{[A,B]}.$$

How to reach the flow of Lie brackets?

Lemma 2

For every A, B matrices, we have

$$\left(e^{\frac{-A}{sn}}e^{-sB}e^{\frac{A}{sn}}e^{sB}\right)^n \xrightarrow[n \to \infty]{} \exp\left(-\frac{A}{s} + e^{-sB}\frac{A}{s}e^{sB}\right) \xrightarrow[s \to 0]{} e^{[A,B]}.$$

•
$$e^{-C}e^{D}e^{C} = \exp(e^{-C}De^{C});$$

How to reach the flow of Lie brackets?

Lemma 2

For every A, B matrices, we have

$$\left(e^{\frac{-A}{sn}}e^{-sB}e^{\frac{A}{sn}}e^{sB}\right)^n \xrightarrow[n \to \infty]{} \exp\left(-\frac{A}{s} + e^{-sB}\frac{A}{s}e^{sB}\right) \xrightarrow[s \to 0]{} e^{[A,B]}.$$

•
$$e^{-C}e^{D}e^{C} = \exp(e^{-C}De^{C});$$

•
$$(e^{D/n}e^{C/n})^n \xrightarrow[n \to \infty]{} e^{D+C}$$
 (Lie-Trotter product formula);

How to reach the flow of Lie brackets?

Lemma 2

For every A, B matrices, we have

$$\left(e^{\frac{-A}{sn}}e^{-sB}e^{\frac{A}{sn}}e^{sB}\right)^n \xrightarrow[n \to \infty]{} \exp\left(-\frac{A}{s} + e^{-sB}\frac{A}{s}e^{sB}\right) \xrightarrow[s \to 0]{} e^{[A,B]}.$$

•
$$e^{-C}e^{D}e^{C} = \exp(e^{-C}De^{C});$$

•
$$(e^{D/n}e^{C/n})^n \xrightarrow[n \to \infty]{} e^{D+C}$$
 (Lie-Trotter product formula);

•
$$e^{-C}De^{C} = \sum_{k=0}^{\infty} \frac{\operatorname{ad}_{C}^{k}(D)}{k!}$$
 where

$$\operatorname{ad}_{C} D = [D, C], \quad \operatorname{ad}_{C}^{k} D = [\operatorname{ad}_{C}^{k-1} D, C].$$

• By considering a large control on a small time-interval we can approximately reach $e^{it(H_0 + \frac{u_j}{t}H_j)} \xrightarrow[t \to 0]{} e^{iu_jH_j}$, for any $u_j \in \mathbb{R}$.

- By considering a large control on a small time-interval we can approximately reach $e^{it(H_0 + \frac{u_j}{t}H_j)} \xrightarrow[t \to 0]{} e^{iu_jH_j}$, for any $u_j \in \mathbb{R}$.
- By Poincaré Theorem, if the time is large enough, we can approximately reach e^{isH₀}, for any s ∈ ℝ.

- By considering a large control on a small time-interval we can approximately reach $e^{it(H_0 + \frac{u_j}{t}H_j)} \xrightarrow[t \to 0]{} e^{iu_jH_j}$, for any $u_j \in \mathbb{R}$.
- By Poincaré Theorem, if the time is large enough, we can approximately reach e^{isH₀}, for any s ∈ ℝ.
- If we can approximately reach $e^A \psi_0$ from any ψ_0 , and $e^B \psi_0$ form any ψ_0 , then we can approximately reach $e^A e^B \psi_0$ form any ψ_0 .

- By considering a large control on a small time-interval we can approximately reach $e^{it(H_0 + \frac{u_j}{t}H_j)} \xrightarrow[t \to 0]{} e^{iu_jH_j}$, for any $u_j \in \mathbb{R}$.
- By Poincaré Theorem, if the time is large enough, we can approximately reach e^{isH₀}, for any s ∈ ℝ.
- If we can approximately reach e^Aψ₀ from any ψ₀, and e^Bψ₀ form any ψ₀, then we can approximately reach e^Ae^Bψ₀ form any ψ₀.
- By Lemma 2 (and Lie-Trotter product formula), we can approximately reach e^A, for any A ∈ Lie{iH₀,..., iH_m}.

- By considering a large control on a small time-interval we can approximately reach $e^{it(H_0 + \frac{u_j}{t}H_j)} \xrightarrow[t \to 0]{} e^{iu_jH_j}$, for any $u_j \in \mathbb{R}$.
- By Poincaré Theorem, if the time is large enough, we can approximately reach e^{isH₀}, for any s ∈ ℝ.
- If we can approximately reach $e^A \psi_0$ from any ψ_0 , and $e^B \psi_0$ form any ψ_0 , then we can approximately reach $e^A e^B \psi_0$ form any ψ_0 .
- By Lemma 2 (and Lie-Trotter product formula), we can approximately reach e^A, for any A ∈ Lie{iH₀,...,iH_m}.
- Since $\operatorname{Lie}\{iH_0, \ldots, iH_m\} = \mathfrak{u}(N)$, the surjectivity of exp : $\mathfrak{u}(N) \to U(N)$ and the transitivity of $U(N) \subseteq S^N$ imply that from any ψ_0 we can approximately reach any ψ_1 .

2 And its proof

3 An algebraic condition for small-time controllability

4 Small-time controllability of scalar-input systems

Small-time controllability

The small-time controllability problem

Given $\psi_0, \psi_1 \in S^n$ and T > 0, find $u : [0, \tau] \to R^m$ with $\tau \leq T$ such that $\psi(\tau, u, \psi_0) = \psi_1$.

Small-time controllability

The small-time controllability problem

Given $\psi_0, \psi_1 \in S^n$ and T > 0, find $u : [0, \tau] \to R^m$ with $\tau \leq T$ such that $\psi(\tau, u, \psi_0) = \psi_1$.

The small-time approximate controllability problem

Given $\psi_0, \psi_1 \in S^n$, and an error $\varepsilon > 0$, find $u : [0, \tau] \to R^m$ with $\tau \leq \varepsilon$ such that $|\psi(\tau, u, \psi_0) - \psi_1| < \varepsilon$.

We say that the equation is small-time (approximately) controllable if the small-time (approximate) controllability problem is solvable for every $\psi_0, \psi_1 \in S^n$.

Small-time controllability

The small-time controllability problem

Given $\psi_0, \psi_1 \in S^n$ and T > 0, find $u : [0, \tau] \to R^m$ with $\tau \leq T$ such that $\psi(\tau, u, \psi_0) = \psi_1$.

The small-time approximate controllability problem

Given $\psi_0, \psi_1 \in S^n$, and an error $\varepsilon > 0$, find $u : [0, \tau] \to R^m$ with $\tau \leq \varepsilon$ such that $|\psi(\tau, u, \psi_0) - \psi_1| < \varepsilon$.

We say that the equation is small-time (approximately) controllable if the small-time (approximate) controllability problem is solvable for every $\psi_0, \psi_1 \in S^n$.

Min-time

$$\begin{split} \mathsf{Min-time}(\psi_0,\psi_1) &= \inf\{t \ge 0 : \exists u : [0,t] \to \mathbb{R}^m \text{ s.t. } \psi(t,u,\psi_0) = \psi_1\}.\\ \mathsf{The min-time of a system is the sup\{\mathsf{min-time}(\psi_0,\psi_1),\psi_0,\psi_1 \in \mathcal{S}^N\}. \end{split}$$

Small-time controllability means that min-time $(\psi_0, \psi_1) = 0$ for any $\psi_0, \psi_1 \in S^N$, or equivalently that its min-time is 0.

Theorem

The Schrödinger equation for the propagator is small-time controllable iff³ $\text{Lie}\{iH_1, \ldots, iH_m\} = \mathfrak{u}(N)$. In particular, if $\text{Lie}\{iH_1, \ldots, iH_m\} = \mathfrak{u}(N)$ the Schrödinger equation for the state is small-time controllable.

³Agrachev, Boscain, Gauthier, Sigalotti; A note on time-zero controllability and density of orbits for quantum systems. Proceedings of IEEE 56th Annual Conference on Decision and Control (CDC) (2017)

⁴D'Alessandro; Small time controllability of systems on compact Lie groups and spin angular momentum. J. Math. Phys. 42, 4488 (2001) 16 of 20

Theorem

The Schrödinger equation for the propagator is small-time controllable iff³ Lie{ iH_1, \ldots, iH_m } = $\mathfrak{u}(N)$. In particular, if Lie{ iH_1, \ldots, iH_m } = $\mathfrak{u}(N)$ the Schrödinger equation for the state is small-time controllable.

Observe that e^A is approximately reachable in small time for any $A \in \text{Lie}\{iH_1, \ldots, iH_m\}$, by considering $e^{it(H_0 + \frac{u_j}{t}H_j)} \xrightarrow[t \to 0]{t \to 0} e^{iu_jH_j}$. What takes long time is the recurrency of the drift, not used here.

³Agrachev, Boscain, Gauthier, Sigalotti; A note on time-zero controllability and density of orbits for quantum systems. Proceedings of IEEE 56th Annual Conference on Decision and Control (CDC) (2017)

⁴D'Alessandro; Small time controllability of systems on compact Lie groups and spin angular momentum. J. Math. Phys. 42, 4488 (2001) 16 of 20

Theorem

The Schrödinger equation for the propagator is small-time controllable iff³ Lie{ iH_1, \ldots, iH_m } = $\mathfrak{u}(N)$. In particular, if Lie{ iH_1, \ldots, iH_m } = $\mathfrak{u}(N)$ the Schrödinger equation for the state is small-time controllable.

Observe that e^A is approximately reachable in small time for any $A \in \text{Lie}\{iH_1, \ldots, iH_m\}$, by considering $e^{it(H_0 + \frac{u_j}{t}H_j)} \xrightarrow[t \to 0]{t \to 0} e^{iu_jH_j}$. What takes long time is the recurrency of the drift, not used here.

• The "if" part is true more in general⁴ for any compact connected Lie group *G*, which in this case is *U*(*n*). The "only if" in general is an open problem. If *G* is not compact, the "only if" is false: *SL*(2).

³Agrachev, Boscain, Gauthier, Sigalotti; A note on time-zero controllability and density of orbits for quantum systems. Proceedings of IEEE 56th Annual Conference on Decision and Control (CDC) (2017)

⁴D'Alessandro; Small time controllability of systems on compact Lie groups and spin angular momentum. J. Math. Phys. 42, 4488 (2001) 16 of 20

Theorem

The Schrödinger equation for the propagator is small-time controllable iff³ Lie{ iH_1, \ldots, iH_m } = $\mathfrak{u}(N)$. In particular, if Lie{ iH_1, \ldots, iH_m } = $\mathfrak{u}(N)$ the Schrödinger equation for the state is small-time controllable.

Observe that e^A is approximately reachable in small time for any $A \in \text{Lie}\{iH_1, \ldots, iH_m\}$, by considering $e^{it(H_0 + \frac{u_j}{t}H_j)} \xrightarrow[t \to 0]{t \to 0} e^{iu_jH_j}$. What takes long time is the recurrency of the drift, not used here.

- The "if" part is true more in general⁴ for any compact connected Lie group G, which in this case is U(n). The "only if" in general is an open problem. If G is not compact, the "only if" is false: SL(2).
- The converse (for the state) is also true when N is odd (with su(N) instead of u(N)), but not when N is even.

³Agrachev, Boscain, Gauthier, Sigalotti; A note on time-zero controllability and density of orbits for quantum systems. Proceedings of IEEE 56th Annual Conference on Decision and Control (CDC) (2017)

⁴D'Alessandro; Small time controllability of systems on compact Lie groups and spin angular momentum. J. Math. Phys. 42, 4488 (2001) 16 of 20

2 And its proof

3 An algebraic condition for small-time controllability

4 Small-time controllability of scalar-input systems

Example (1/2-spin)

Thanks to the commutation relations satisfied by the Pauli matrices, and by the criterium for controllability, the equation

$$i\frac{d}{dt}\psi(t) = (\sigma_z + u(t)\sigma_y)\psi(t),$$

with $u(t) \in \mathbb{R}, \psi \in \mathbb{C}^2, \|\psi\| = 1$, is controllable.

⁶Agrachev, Chambrion: An estimation of the controllability time for single-input systems on compact Lie Groups, ESAIM COCV (2006)

⁷Rossi, Gauthier, A universal gap for non-spin quantum control systems, Proc. AMS (2021)

⁵Khaneja, Brockett, Glaser; Time Optimal Control in Spin Systems. Physical review A, 63(3), (2000)

Example (1/2-spin)

Thanks to the commutation relations satisfied by the Pauli matrices, and by the criterium for controllability, the equation

$$i\frac{d}{dt}\psi(t) = (\sigma_z + u(t)\sigma_y)\psi(t),$$

with $u(t) \in \mathbb{R}, \psi \in \mathbb{C}^2, \|\psi\| = 1$, is controllable. The criterium for STC is not satisfied. In fact, it is not STC.

⁵Khaneja, Brockett, Glaser; Time Optimal Control in Spin Systems. Physical review A, 63(3), (2000)

⁶Agrachev, Chambrion: An estimation of the controllability time for single-input systems on compact Lie Groups, ESAIM COCV (2006)

⁷Rossi, Gauthier, A universal gap for non-spin quantum control systems, Proc. AMS (2021)

Example (1/2-spin)

Thanks to the commutation relations satisfied by the Pauli matrices, and by the criterium for controllability, the equation

$$i\frac{d}{dt}\psi(t) = (\sigma_z + u(t)\sigma_y)\psi(t),$$

with $u(t) \in \mathbb{R}, \psi \in \mathbb{C}^2, \|\psi\| = 1$, is controllable. The criterium for STC is not satisfied. In fact, it is not STC. Characterization of the min-time:

Theorem⁵

Given any $U \in U(2)$, there exists a unique $\tau \in [0, 2\pi)$ such that $U = U_1 e^{\tau \sigma_z} U_2$ where $U_2, U_1 \in e^{\mathbb{R}\sigma_x}$. Moreover, $\tau = \min$ -time(I, U).

Estimating⁶ the min-time is an (open) problem⁷ with important technological consequences.

⁵Khaneja, Brockett, Glaser; Time Optimal Control in Spin Systems. Physical review A, 63(3), (2000)

⁶Agrachev, Chambrion: An estimation of the controllability time for single-input systems on compact Lie Groups, ESAIM COCV (2006)

⁷Rossi, Gauthier, A universal gap for non-spin quantum control systems, Proc. AMS (2021)

We consider $\frac{d}{dt}\psi(t) = (A + uB)\psi(t), \psi \in S^N$.

Theorem⁸

If m = 1 and $N \ge 2$, the equation for the state is not small-time controllable.

⁸Beauchard, Coron, Teismann, Minimal time for the bilinear control of Schrödinger equations, Sytems & Control Letters 71, 2014

We consider
$$\frac{d}{dt}\psi(t) = (A + uB)\psi(t), \psi \in S^N$$
.

Theorem⁸

If m = 1 and $N \ge 2$, the equation for the state is not small-time controllable.

Let $v(t) = \int_0^t u(s) ds$, $\phi(t) = e^{-v(t)} \psi(t)$, then

$$\frac{d}{dt}\phi(t) = e^{-\nu(t)B}Ae^{\nu(t)B}\phi(t).$$

⁸Beauchard, Coron, Teismann, Minimal time for the bilinear control of Schrödinger equations, Sytems & Control Letters 71, 2014

We consider
$$\frac{d}{dt}\psi(t) = (A + uB)\psi(t), \psi \in S^N$$
.

Theorem⁸

If m = 1 and $N \ge 2$, the equation for the state is not small-time controllable.

Let $v(t) = \int_0^t u(s) ds$, $\phi(t) = e^{-v(t)} \psi(t)$, then

$$\frac{d}{dt}\phi(t) = e^{-\nu(t)B}Ae^{\nu(t)B}\phi(t).$$

Let e_j eigenbasis for B: $Be_j = b_j e_j, b_j \in i\mathbb{R}$. Then $|\langle \psi(t), e_j \rangle| = |\langle \phi(t), e_j \rangle|$.

⁸Beauchard, Coron, Teismann, Minimal time for the bilinear control of Schrödinger equations, Sytems & Control Letters 71, 2014

We consider
$$\frac{d}{dt}\psi(t) = (A + uB)\psi(t), \psi \in S^N$$
.

Theorem⁸

If m = 1 and $N \ge 2$, the equation for the state is not small-time controllable.

Let $v(t) = \int_0^t u(s) ds$, $\phi(t) = e^{-v(t)} \psi(t)$, then

$$\frac{d}{dt}\phi(t) = e^{-v(t)B}Ae^{v(t)B}\phi(t).$$

Let e_j eigenbasis for B: $Be_j = b_j e_j, b_j \in i\mathbb{R}$. Then $|\langle \psi(t), e_j \rangle| = |\langle \phi(t), e_j \rangle|$. Hence

$$\begin{split} |\langle \psi(t), e_j \rangle| - |\langle \psi_0, e_j \rangle| &= |\langle \phi(t), e_j \rangle| - |\langle \phi_0, e_j \rangle| \leq |\langle \phi(t) - \phi_0, e_j \rangle| \\ &= |\langle \int_0^t \phi'(s) ds, e_j \rangle| \leq t \|A\| \Rightarrow \mathsf{min-time}(e_j, e_k) \geqslant 1/\|A\|. \end{split}$$

⁸Beauchard, Coron, Teismann, Minimal time for the bilinear control of Schrödinger equations, Sytems & Control Letters 71, 2014

We consider
$$\frac{d}{dt}\psi(t) = (A + uB)\psi(t), \psi \in S^N$$
.

Theorem⁸

If m = 1 and $N \ge 2$, the equation for the state is not small-time controllable.

Let $v(t) = \int_0^t u(s) ds$, $\phi(t) = e^{-v(t)} \psi(t)$, then

$$\frac{d}{dt}\phi(t) = e^{-v(t)B}Ae^{v(t)B}\phi(t).$$

Let e_j eigenbasis for B: $Be_j = b_j e_j, b_j \in i\mathbb{R}$. Then $|\langle \psi(t), e_j \rangle| = |\langle \phi(t), e_j \rangle|$. Hence

$$\begin{split} |\langle \psi(t), e_j \rangle| - |\langle \psi_0, e_j \rangle| &= |\langle \phi(t), e_j \rangle| - |\langle \phi_0, e_j \rangle| \le |\langle \phi(t) - \phi_0, e_j \rangle| \\ &= |\langle \int_0^t \phi'(s) ds, e_j \rangle| \le t \|A\| \Rightarrow \mathsf{min-time}(e_j, e_k) \ge 1/\|A\|. \end{split}$$

What happens if A is unbounded?

⁸Beauchard, Coron, Teismann, Minimal time for the bilinear control of Schrödinger equations, Sytems & Control Letters 71, 2014

The group of real 2×2 matrices with det=1 is SL(2). Its Lie algebra is given by the 2×2 real traceless matrices $\mathfrak{sl}(2)$, with basis:

$$a = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Commutation relations: [a, b] = c, [a, c] = 2a, [b, c] = -2b.

Theorem⁹

 $\dot{g} = (a + ub)g, g \in SL(2)$, is STC.

⁹Beauchard, Pozzoli: Examples of small-time controllable Schrödinger equations. Annales Henri Poincaré (2025)

The group of real 2×2 matrices with det=1 is SL(2). Its Lie algebra is given by the 2×2 real traceless matrices $\mathfrak{sl}(2)$, with basis:

$$a = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Commutation relations: [a, b] = c, [a, c] = 2a, [b, c] = -2b.

Theorem⁹

$$\dot{g} = (a + ub)g, g \in SL(2), \text{ is STC.}$$

Ingredients:

•
$$e^{-u\frac{b}{\tau}}e^{\tau(a-\frac{2u^2b}{\tau^2})}e^{u\frac{b}{\tau}} \rightarrow e^{ub}$$
 as $\tau \rightarrow 0$, for any $u \in \mathbb{R}$.

⁹Beauchard, Pozzoli: Examples of small-time controllable Schrödinger equations. Annales Henri Poincaré (2025)

The group of real 2×2 matrices with det=1 is SL(2). Its Lie algebra is given by the 2×2 real traceless matrices $\mathfrak{sl}(2)$, with basis:

$$a = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Commutation relations: [a, b] = c, [a, c] = 2a, [b, c] = -2b.

Theorem⁹

$$\dot{g} = (a + ub)g, g \in SL(2), \text{ is STC.}$$

Ingredients:

•
$$e^{-u\frac{b}{\tau}}e^{\tau(a-\frac{2u^2b}{\tau^2})}e^{u\frac{b}{\tau}} \rightarrow e^{ub}$$
 as $\tau \rightarrow 0$, for any $u \in \mathbb{R}$.

•
$$e^{\log(\tau^{1/2})c}e^{s\tau a}e^{\log(\tau^{-1/2}c)} = e^{sa}$$
, for any $s, \tau > 0$.

⁹Beauchard, Pozzoli: Examples of small-time controllable Schrödinger equations. Annales Henri Poincaré (2025)

The group of real 2×2 matrices with det=1 is SL(2). Its Lie algebra is given by the 2×2 real traceless matrices $\mathfrak{sl}(2)$, with basis:

$$a = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Commutation relations: [a, b] = c, [a, c] = 2a, [b, c] = -2b.

Theorem⁹

$$\dot{g} = (a + ub)g, g \in SL(2), \text{ is STC.}$$

•
$$e^{-u\frac{b}{\tau}}e^{\tau(a-\frac{2u^2b}{\tau^2})}e^{u\frac{b}{\tau}} \to e^{ub}$$
 as $\tau \to 0$, for any $u \in \mathbb{R}$.

•
$$e^{\log(\tau^{1/2})c}e^{s\tau a}e^{\log(\tau^{-1/2}c)} = e^{sa}$$
, for any $s, \tau > 0$.

•
$$e^{s(a-b)} = \begin{pmatrix} \sin(s) & \cos(s) \\ -\cos(s) & \sin(s) \end{pmatrix}$$
 is periodic (thus recurrent!) in *s*.
Hence I can generate $e^{s(a-b)}, s < 0$.

⁹Beauchard, Pozzoli: Examples of small-time controllable Schrödinger equations. Annales Henri Poincaré (2025)

The group of real 2×2 matrices with det=1 is SL(2). Its Lie algebra is given by the 2×2 real traceless matrices $\mathfrak{sl}(2)$, with basis:

$$a = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Commutation relations: [a, b] = c, [a, c] = 2a, [b, c] = -2b.

Theorem⁹

$$\dot{g} = (a + ub)g, g \in SL(2), \text{ is STC}.$$

Ingredients:

•
$$e^{-u\frac{b}{\tau}}e^{\tau(a-\frac{2u^2b}{\tau^2})}e^{u\frac{b}{\tau}} \rightarrow e^{ub}$$
 as $\tau \rightarrow 0$, for any $u \in \mathbb{R}$.

• $e^{\log(\tau^{1/2})c}e^{s\tau a}e^{\log(\tau^{-1/2}c)} = e^{sa}$, for any $s, \tau > 0$.

• $e^{s(a-b)} = \begin{pmatrix} \sin(s) & \cos(s) \\ -\cos(s) & \sin(s) \end{pmatrix}$ is periodic (thus recurrent!) in s. Hence I can generate $e^{s(a-b)}, s < 0$.

Weyl metaplectic representation, harmonic oscillator: $a = i\Delta, b = i \|x\|^2$.⁹Beauchard, Pozzoli: Examples of small-time controllable Schrödingerequations. Annales Henri Poincaré (2025)19 of 20

To be continued... Thanks for your attention!