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The Schrödinger equation for the state and for the
propagator

Controlled quantum evolution for the state
ψptq P SN “ tψ P CN | |ψ| “ 1u (it has real dimension 2N ´ 1)

i
d

dt
ψptq “

¨

˝H0 `

m
ÿ

j“1

ujptqHj

˛

‚ψptq, ψpt “ 0q “ ψ0 P SN .

‚ The generators: H0 (the drift), H1, ...,Hm (the interactions),
Hermitian matrices on H “ CN : H˚

j “ Hj . Alternatively,
piHjq

˚ “ ´iHj , i.e. Hj P upNq. (It has real dim. N2)

‚ The evolutions: e itHj , t P R, unitary matrices on H “ CN :
pe itHj q˚ “ pe itHj q´1 “ e´itHj . I.e., e itHj P UpNq. In particular,
|e itHjψ| “ |ψ| “ 1.

Controlled quantum evolution for the propagator U P UpNq:

i
d

dt
Uptq “

¨

˝H0 `

m
ÿ

j“1

ujptqHj

˛

‚Uptq, Upt “ 0q “ I.
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The controllability problem

‚ To every initial state ψ0 and control function u : r0,T s Ñ Rm, we
associate the wavefunction ψpt, u, ψ0q at time t P r0,T s, that is,
the solution of the ODE.

‚ E.g., if u is piecewise constant, then

ψpt, u, ψ0q “ e ipt´
řk

j“1 tj qpH0`
řm

j“1 uj ptkqHj q...e it1pH0`
řm

j“1 uj pt1qHj qψ0.

The controllability problem
Given ψ0, ψ1 P Sn, find u : r0,T s Ñ Rm such that ψpT , u, ψ0q “ ψ1.

The approximate controllability problem
Given ψ0, ψ1 P Sn, and an error ε ą 0, find u : r0,T s Ñ Rm such that
|ψpT , u, ψ0q ´ ψ1| ă ε.

We say that the equation is (approximately) controllable if the
(approximate) controllability problem is solvable for every ψ0, ψ1 P Sn.
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Lie algebras

The vector space of anti-Hermitian (traceless) N ˆ N complex matrices
upNq (supNq) is a Lie algebra: if A,B P upnq, then
rA,Bs :“ AB ´ BA P upNq. Given A1, . . . ,Am P upNq, we introduce

LietA1, . . . ,Amu Ă upNq

defined as the smallest vector space containing A1, . . . ,Am, closed under
commutator:

C,D P LietA1, . . . ,Amu ñ rC,Ds :“ CD ´ DC P LietA1, . . . ,Amu.

Example: The Pauli matrices

σx “

ˆ

0 ´i
´i 0

˙

, σy “

ˆ

0 ´1
1 0

˙

, σz “

ˆ

´i 0
0 i

˙

,

form a basis of sup2q. They satisfy the commutation relations

rσz , σx s “ 2σy , rσy , σz s “ 2σx , rσx , σy s “ 2σz .
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A criterium for controllability

Theorem
The Schrödinger equation for the propagator is controllable iff
LietiH0, . . . , iHmu “ upNq. In particular, if LietiH0, . . . , iHmu “ upNq the
Schrödinger equation for the state is controllable.

In the rest of this lecture, we prove a weaker version, namely: if
LietiH0, . . . , iHmu “ upNq, the eq. for the state is approx. controllable.

‚ The result (for the propagator) is true more in general1 for any
compact connected Lie group G , which in this case is Upnq.

‚ The converse statement (for the state) is also true2 when N is odd
(with supNq instead of upNq), but not when N is even (there exist
proper subgroups of SUpNq acting transitively on the sphere SN).

1Jurdjevic, Sussmann; Control Systems on Lie Groups. J. Diff. Eq. 12,
313-329 (1972)

2Albertini, D’Alessandro; Notions of Controllability for Quantum Mechanical
Systems. Proceedings of the 40th IEEE Conference on Decision and Control
(2001) 6 of 20
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Structure of the proof

We show that:

‚ For any ψ0, ψ1 P SN , there exists U P UpNq such that Uψ0 “ ψ1
(i.e., the action of UpNq on SN is transitive).

‚ For any U P Upnq there exists A P upnq such that U “ eA (i.e., the
exponential map exp : upNq Ñ UpNq is surjective).

‚ For any A P upnq, we can approximately control the system from ψ0
towards eAψ0.
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UpNqüSN is transitive

Given ψ0, complete it to an orthonormal basis tψ0, v2, . . . , vNu of
CN .

The matrix made of columns

V “ pψ0, v2, . . . , vNq P UpNq

and is such that Ve1 “ ψ0.In the same way, we can construct W P UpNq

such that We1 “ ψ1.Hence, U :“ WV ˚ P UpNq is such that

Uψ0 “ WV ˚ψ0 “ We1 “ ψ1.
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exp : upNq Ñ UpNq is surjective

By the spectral theorem for normal matrices, diagonalize U “ VDUV
˚,

where V P UpNq and

DU “ diagpe iθ1 , . . . , e iθN q, θi P R.

Notice that

DU “ exppDAq, DA “ diagpiθ1, . . . , iθNq.

Then,
A :“ VDAV

˚ P upNq, eA “ U.
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Recurrent vector fields

Flow of a vector field
Given a smooth vector field f : M Ñ TM we denote by ϕtf its flow at
time t, that is, xptq :“ ϕtf px0q solves the ODE

d

dt
xptq “ f pxptqq, xp0q “ x0.

Recurrent vector field (e.g., periodic vector fields)

A vector field f : M Ñ TM is recurrent if for every x P M, ngbhd Vx ,
and time t ą 0, there exists T ě t such that ϕTf pVxq X Vx ‰ H.

Lemma 1
If a vector field f is recurrent, then for every t ą 0,

ϕ´t
f px0q P tϕsf px0q, s ě 0u.

By recurrence, there exists sk Ò 8 such that ϕskf pϕ´t
f px0qq Ñ ϕ´t

f px0q.
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A theorem of Poincaré

Poincaré’s Theorem
Let M be compact with finite volume volpMq ă 8. If the flow of a
vector field f preserves the volumes, the vector field is recurrent.

Let x P M,Vx , t ą 0. Consider the sets

ϕntf pVxq, n P N.

Since the flow preserves the volume, and the manifold has finite volume,
it follows that there exist n,m P N, n ą m, such that

ϕntf pVxq X ϕmt
f pVxq ‰ H.

This implies (by applying ϕ´mt
f )

ϕ
pn´mqt
f pVxq X Vx ‰ H.

Since pn ´ mqt ě t, the proof is concluded.
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Schrödinger flows are volume preserving

‚ Given A P upNq, the flow etA preserves the volume:

volpetApV qq “

ż

etApV q

dψ “
loomoon

ϕ“etAψ

ż

V

| det e´tA|
loooomoooon

“1

dϕ “

ż

V

dϕ “ volpV q.

‚ Since the sphere SN is compact and of finite volume, Poincaré
Theorem implies that the vector field ψ ÞÑ Aψ is recurrent.

‚ Lemma 1 implies that for every ψ P SN , t ą 0, we can
approximately reach the state e´itH0ψ.
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How to reach the flow of Lie brackets?

Lemma 2
For every A,B matrices, we have

´

e
´A
sn e´sBe

A
sn esB

¯n

ÝÝÝÑ
nÑ8

exp

ˆ

´
A

s
` e´sB A

s
esB

˙

ÝÝÝÑ
sÑ0

erA,Bs.

Ingredients:

‚ e´CeDeC “ exp
`

e´CDeC
˘

;

‚ peD{neC{nqn ÝÝÝÑ
nÑ8

eD`C (Lie-Trotter product formula);

‚ e´CDeC “
ř8

k“0
adk

C pDq

k! where

adCD “ rD,C s, adk
CD “ radk´1

C D,C s.
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sn esB

¯n

ÝÝÝÑ
nÑ8

exp

ˆ

´
A

s
` e´sB A

s
esB

˙

ÝÝÝÑ
sÑ0

erA,Bs.

Ingredients:

‚ e´CeDeC “ exp
`

e´CDeC
˘

;

‚ peD{neC{nqn ÝÝÝÑ
nÑ8
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Conclusion of the proof

‚ By considering a large control on a small time-interval we can
approximately reach e itpH0`

uj
t Hj q ÝÝÝÑ

tÑ0
e iujHj , for any uj P R.

‚ By Poincaré Theorem, if the time is large enough, we can
approximately reach e isH0 , for any s P R.

‚ If we can approximately reach eAψ0 from any ψ0, and eBψ0 form
any ψ0, then we can approximately reach eAeBψ0 form any ψ0.

‚ By Lemma 2 (and Lie-Trotter product formula), we can
approximately reach eA, for any A P LietiH0, . . . , iHmu.

‚ Since LietiH0, . . . , iHmu “ upNq, the surjectivity of
exp : upNq Ñ UpNq and the transitivity of UpNqüSN imply that
from any ψ0 we can approximately reach any ψ1.
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Small-time controllability

The small-time controllability problem
Given ψ0, ψ1 P Sn and T ą 0, find u : r0, τ s Ñ Rm with τ ď T such that
ψpτ, u, ψ0q “ ψ1.

The small-time approximate controllability problem
Given ψ0, ψ1 P Sn, and an error ε ą 0, find u : r0, τ s Ñ Rm with τ ď ε
such that |ψpτ, u, ψ0q ´ ψ1| ă ε.

We say that the equation is small-time (approximately) controllable if the
small-time (approximate) controllability problem is solvable for every
ψ0, ψ1 P Sn.

Min-time
Min-timepψ0, ψ1q “ inftt ě 0 : Du : r0, ts Ñ Rm s.t. ψpt, u, ψ0q “ ψ1u.
The min-time of a system is the suptmin-timepψ0, ψ1q, ψ0, ψ1 P SNu.

Small-time controllability means that min-timepψ0, ψ1q “ 0 for any
ψ0, ψ1 P SN , or equivalently that its min-time is 0.

15 of 20
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A criterium for small-time controllability

Theorem
The Schrödinger equation for the propagator is small-time controllable
iff3 LietiH1, . . . , iHmu “ upNq. In particular, if LietiH1, . . . , iHmu “ upNq

the Schrödinger equation for the state is small-time controllable.

Observe that eA is approximately reachable in small time for any
A P LietiH1, . . . , iHmu, by considering e itpH0`

uj
t Hj q ÝÝÝÑ

tÑ0
e iujHj . What

takes long time is the recurrency of the drift, not used here.

‚ The "if" part is true more in general4 for any compact connected
Lie group G , which in this case is Upnq. The "only if" in general is
an open problem. If G is not compact, the "only if" is false: SLp2q.

‚ The converse (for the state) is also true when N is odd (with supNq

instead of upNq), but not when N is even.

3Agrachev, Boscain, Gauthier, Sigalotti; A note on time-zero controllability
and density of orbits for quantum systems. Proceedings of IEEE 56th Annual
Conference on Decision and Control (CDC) (2017)

4D’Alessandro; Small time controllability of systems on compact Lie groups
and spin angular momentum. J. Math. Phys. 42, 4488 (2001) 16 of 20
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Example (1{2-spin)
Thanks to the commutation relations satisfied by the Pauli matrices, and
by the criterium for controllability, the equation

i
d

dt
ψptq “ pσz ` uptqσy qψptq,

with uptq P R, ψ P C2, }ψ} “ 1, is controllable.

The criterium for STC is
not satisfied. In fact, it is not STC.Characterization of the min-time:

Theorem5

Given any U P Up2q, there exists a unique τ P r0, 2πq such that
U “ U1e

τσzU2 where U2,U1 P eRσx . Moreover, τ “min-timepI ,Uq.

Estimating6 the min-time is an (open) problem7 with important
technological consequences.

5Khaneja, Brockett, Glaser; Time Optimal Control in Spin Systems.
Physical review A, 63(3), (2000)

6Agrachev, Chambrion: An estimation of the controllability time for
single-input systems on compact Lie Groups, ESAIM COCV (2006)

7Rossi, Gauthier, A universal gap for non-spin quantum control systems,
Proc. AMS (2021) 17 of 20
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Swapping the eigenstates of H1 takes long time
We consider d

dtψptq “ pA ` uBqψptq, ψ P SN .

Theorem8

If m “ 1 and N ě 2, the equation for the state is not small-time
controllable.

Let vptq “
şt

0 upsqds, ϕptq “ e´vptqψptq, then

d

dt
ϕptq “ e´vptqBAevptqBϕptq.

Let ej eigenbasis for B: Bej “ bjej , bj P iR. Then
|xψptq, ejy| “ |xϕptq, ejy|.Hence

|xψptq, ejy| ´ |xψ0, ejy| “ |xϕptq, ejy| ´ |xϕ0, ejy| ď |xϕptq ´ ϕ0, ejy|

“ |x

ż t

0
ϕ1

psqds, ejy| ď t}A} ñ min-timepej , ekq ě 1{}A}.

What happens if A is unbounded?

8Beauchard, Coron, Teismann, Minimal time for the bilinear control of
Schrödinger equations, Sytems & Control Letters 71, 2014 18 of 20
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An example of a STC scalar-input system
The group of real 2 ˆ 2 matrices with det=1 is SLp2q. Its Lie algebra is
given by the 2 ˆ 2 real traceless matrices slp2q, with basis:

a “

ˆ

0 0
1 0

˙

, b “

ˆ

0 1
0 0

˙

, c “

ˆ

1 0
0 ´1

˙

.

Commutation relations: ra, bs “ c , ra, cs “ 2a, rb, cs “ ´2b.

Theorem9

9g “ pa ` ubqg , g P SLp2q, is STC.

Ingredients:

‚ e´u b
τ eτpa´ 2u2b

τ2 qeu
b
τ Ñ eub as τ Ñ 0, for any u P R.

‚ e logpτ1{2
qcesτae logpτ´1{2cq “ esa, for any s, τ ą 0.

‚ espa´bq “

ˆ

sinpsq cospsq

´ cospsq sinpsq

˙

is periodic (thus recurrent!) in s.

Hence I can generate espa´bq, s ă 0.

Weyl metaplectic representation, harmonic oscillator: a “ i∆, b “ i}x}2.

9Beauchard, Pozzoli: Examples of small-time controllable Schrödinger
equations. Annales Henri Poincaré (2025) 19 of 20
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‚ espa´bq “

ˆ

sinpsq cospsq

´ cospsq sinpsq

˙

is periodic (thus recurrent!) in s.

Hence I can generate espa´bq, s ă 0.

Weyl metaplectic representation, harmonic oscillator: a “ i∆, b “ i}x}2.
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An example of a STC scalar-input system
The group of real 2 ˆ 2 matrices with det=1 is SLp2q. Its Lie algebra is
given by the 2 ˆ 2 real traceless matrices slp2q, with basis:

a “

ˆ

0 0
1 0

˙

, b “

ˆ

0 1
0 0

˙

, c “

ˆ

1 0
0 ´1

˙

.

Commutation relations: ra, bs “ c , ra, cs “ 2a, rb, cs “ ´2b.

Theorem9

9g “ pa ` ubqg , g P SLp2q, is STC.

Ingredients:

‚ e´u b
τ eτpa´ 2u2b

τ2 qeu
b
τ Ñ eub as τ Ñ 0, for any u P R.

‚ e logpτ1{2
qcesτae logpτ´1{2cq “ esa, for any s, τ ą 0.

‚ espa´bq “

ˆ

sinpsq cospsq

´ cospsq sinpsq

˙

is periodic (thus recurrent!) in s.

Hence I can generate espa´bq, s ă 0.

Weyl metaplectic representation, harmonic oscillator: a “ i∆, b “ i}x}2.
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To be continued...
Thanks for your attention!
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