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The Schrodinger equation for the state and for the

propagator

Controlled quantum evolution for the state
Y(t) e SN = {yp e CN | |yp| = 1} (it has real dimension 2N — 1)

/—z/} = ( i ) Y(t =0) =1 e SN.
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o The evolutions: e t ¢ R, unitary matrices on { = C":

(ethi)* = (e)=1 = e~ itH | e, ™ e U(N). In particular,
e™Mih| = || = 1.
Y

Controlled quantum evolution for the propagator U € U(N):

id%U(t) = (Ho +Ji Uj(t)Hj> u(t), U(t=0) =1
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The controllability problem

e To every initial state ¢o and control function v : [0, T| — R™, we

associate the wavefunction 1 (t, u, o) at time t € [0, T], that is,
the solution of the ODE.

e E.g., if uis piecewise constant, then

Y(t, u, o) = /(= Xjea ) (Mot X i (80H) | oita (Ho+XLs 4i(8) )

The controllability problem

Given g, 11 € 8", find u : [0, T] — R™ such that ¥(T, u,v) = 1.
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The controllability problem

e To every initial state ¢o and control function v : [0, T| — R™, we

associate the wavefunction 1 (t, u, o) at time t € [0, T], that is,
the solution of the ODE.

e E.g., if uis piecewise constant, then

p(t, u, 1) = /(= Xjea ) (Mot X i (80H) | oita (Ho+XLs 4i(8) )

The controllability problem
Given g, 11 € 8", find u : [0, T] — R™ such that ¥(T, u,v) = 1.

The approximate controllability problem
Given 1,11 € 8", and an error € > 0, find v : [0, T| — R™ such that
WJ(T? vaO) - 1/11| <¢&.

We say that the equation is (approximately) controllable if the
(approximate) controllability problem is solvable for every v, 11 € S".
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Lie algebras

The vector space of anti-Hermitian (traceless) N x N complex matrices
u(N) (su(N)) is a Lie algebra: if A, B € u(n), then
[A,B] := AB — BAc u(N). Given Ay,...,Apn € u(N), we introduce

defined as the smallest vector space containing As, ..., A, closed under
commutator:

C.D e Lie{Ay,...,An} = [C,D] := CD — DC € Lie{Ay, . .., An}.
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The vector space of anti-Hermitian (traceless) N x N complex matrices
u(N) (su(N)) is a Lie algebra: if A, B € u(n), then
[A,B] := AB — BAc u(N). Given Ay,...,Apn € u(N), we introduce

defined as the smallest vector space containing As, ..., A, closed under
commutator:

C.D e Lie{Ay,...,An} = [C,D] := CD — DC € Lie{Ay, . .., An}.

Example: The Pauli matrices

(0 —i (0 -1 (=i 0
=i o) %=1 o) %2=\o i)

form a basis of su(2). They satisfy the commutation relations

lo7,04] =20y, |oy,0.] =20« [0k, 0,]=20,.
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A criterium for controllability

Theorem

The Schrédinger equation for the propagator is controllable iff
Lie{iHo, ..., iHn} = u(N). In particular, if Lie{iHo, ..., iHyn} = u(N) the
Schrédinger equation for the state is controllable.

! Jurdjevic, Sussmann; Control Systems on Lie Groups. J. Diff. Eq. 12,
313-329 (1972)

2Albertini, D'Alessandro; Notions of Controllability for Quantum Mechanical
Systems. Proceedings of the 40th IEEE Conference on Decision and Control
(2001) 6 of 20
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Theorem

The Schrédinger equation for the propagator is controllable iff
Lie{iHo, ..., iHn} = u(N). In particular, if Lie{iHo, ..., iHyn} = u(N) the
Schrédinger equation for the state is controllable.

In the rest of this lecture, we prove a weaker version, namely: if
Lie{iHo, ..., iHn} = u(N), the eq. for the state is approx. controllable.

e The result (for the propagator) is true more in general® for any
compact connected Lie group G, which in this case is U(n).

e The converse statement (for the state) is also true? when N is odd
(with su(N) instead of u(/N)), but not when N is even (there exist
proper subgroups of SU(N) acting transitively on the sphere SN).

! Jurdjevic, Sussmann; Control Systems on Lie Groups. J. Diff. Eq. 12,
313-329 (1972)

2Albertini, D'Alessandro; Notions of Controllability for Quantum Mechanical
Systems. Proceedings of the 40th IEEE Conference on Decision and Control
(2001) 6 of 20



Structure of the proof

We show that:

e For any v, 11 € SV, there exists U € U(N) such that Uz = 9y
(i.e., the action of U(N) on S" is transitive).
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e For any v, 11 € SV, there exists U € U(N) such that Uz = 9y
(i.e., the action of U(N) on S" is transitive).

e For any U e U(n) there exists A € u(n) such that U = e (i.e., the
exponential map exp : u(N) — U(N) is surjective).

e For any A € u(n), we can approximately control the system from g
towards e”)y.
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U(N)GSN is transitive

Given g, complete it to an orthonormal basis {19, va, ..., vy} of
CcNV.



U(N)GSN is transitive

Given g, complete it to an orthonormal basis {19, va, ..., vy} of
CN The matrix made of columns

V = (11“&03‘/27"'7VN) € U(N)

and is such that Ve; = 1.
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U(N)GSN is transitive

Given g, complete it to an orthonormal basis {19, va, ..., vy} of
CN The matrix made of columns

V = (@bOaVQM"aVN) € U(N>

and is such that Ve; = 9g.In the same way, we can construct W e U(N)
such that We; = 1;.Hence, U := WV* € U(N) is such that

Ui = WV*U)O = We; = 1.
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exp : u(N) — U(N) is surjective

By the spectral theorem for normal matrices, diagonalize U = VDy V*,
where V € U(N) and

Dy = diag(e®,... "), 6 eR.

9 of 20



exp : u(N) — U(N) is surjective

By the spectral theorem for normal matrices, diagonalize U = VDy V*,
where V € U(N) and

Dy = diag(e®,... "), 6 eR.
Notice that

DU = exp(DA), DA = diag(i@l,...,iﬁ,\,).

9 of 20



exp : u(N) — U(N) is surjective

By the spectral theorem for normal matrices, diagonalize U = VDy V*,
where V € U(N) and

Dy = diag(e®,... "), 6 eR.
Notice that
DU = exp(DA), DA = diag(i@l,...,iﬁ,\,).

Then,
A:= VDaV* e u(N), e*=U.
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Recurrent vector fields

Flow of a vector field

Given a smooth vector field f : M — TM we denote by ¢f its flow at
time t, that is, x(t) := ¢ (xo) solves the ODE

d
Ix(t) = f(x(t)), x(0)= xo.

10 of 20



Recurrent vector fields

Flow of a vector field

Given a smooth vector field f : M — TM we denote by ¢f its flow at
time t, that is, x(t) := ¢ (xo) solves the ODE

Recurrent vector field (e.g., periodic vector fields)

A vector field f : M — TM is recurrent if for every x € M, ngbhd V4,
and time t > 0, there exists T > t such that ¢/ (V,) n Vi # .

10 of 20



Recurrent vector fields

Flow of a vector field

Given a smooth vector field f : M — TM we denote by ¢f its flow at
time t, that is, x(t) := ¢ (xo) solves the ODE

Recurrent vector field (e.g., periodic vector fields)

A vector field f : M — TM is recurrent if for every x € M, ngbhd V4,
and time t > 0, there exists T > t such that ¢/ (V,) n Vi # .

Lemma 1

If a vector field f is recurrent, then for every t > 0,

(,Zsf_t(Xo) € {qi)?(Xo),S = 0}

By recurrence, there exists s, 1 00 such that ¢ (¢7 “(x0)) — &7 "(x0). 10 of 20



A theorem of Poincaré

Poincaré's Theorem

Let M be compact with finite volume vol(M) < co. If the flow of a
vector field f preserves the volumes, the vector field is recurrent.
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A theorem of Poincaré

Poincaré's Theorem

Let M be compact with finite volume vol(M) < co. If the flow of a
vector field f preserves the volumes, the vector field is recurrent.

Let xe M, V,,t > 0. Consider the sets
%(V;),ne N,

Since the flow preserves the volume, and the manifold has finite volume,
it follows that there exist n,m € N, n > m, such that

oF (Vi) n o7 (Vx) # .
This implies (by applying ¢7 ™)
qsfnfm)t(vx) A Vx ;& @

Since (n — m)t = t, the proof is concluded.
11 of 20



Schrédinger flows are volume preserving

e Given A u(N), the flow e** preserves the volume:

vol(efA(V)):f dp = f|dete*m|d@:f d¢ = vol(V).
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Schrédinger flows are volume preserving

e Given A u(N), the flow e** preserves the volume:

vol(e"(V)) = f dp = |dete™ ™| d¢ = f d¢ = vol(V).
etA(V) (/)te’m—; Vi —— v

e Since the sphere SN is compact and of finite volume, Poincaré
Theorem implies that the vector field i) — A is recurrent.

e Lemma 1 implies that for every ¢y € SN, t > 0, we can
approximately reach the state e~ toq).
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How to reach the flow of Lie brackets?

For every A, B matrices, we have

—A A g A _RA
(e e sBesneSB) — exp <—+e SBeSB> —— elABl
n—o0 S S s—0
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How to reach the flow of Lie brackets?

For every A, B matrices, we have

—A A g A _RA
(e e sBesneSB) — exp <—+e SBeSB> —— elABl
n—o0 S S s—0

Ingredients:

o e CeleC =exp (e De);

o (eP/neC/mn ., eD+C (Lie-Trotter product formula);
n—0o0

- o adf(D
o e CDeC =3 & if ) where

ad¢D = [D,C], adiD = [adE D, C].
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Conclusion of the proof

e By considering a large control on a small time-interval we can
it(Hot+5H) et for any uj € R.

approximately reach e
t—0
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Conclusion of the proof

e By considering a large control on a small time-interval we can

it(Hot+5H) et for any uj € R.

approximately reach e
t—0

e By Poincaré Theorem, if the time is large enough, we can
approximately reach e for any s € R.

o If we can approximately reach e*1)y from any v, and eBiy form
any 1o, then we can approximately reach e”eB4)y form any .

e By Lemma 2 (and Lie-Trotter product formula), we can
approximately reach e, for any A € Lie{iHy, ..., iHmn}.

e Since Lie{iHo, ..., iHn} = u(N), the surjectivity of
exp : u(N) — U(N) and the transitivity of U(N)GSN imply that
from any 1o we can approximately reach any ;.

14 of 20



An algebraic condition for small-time controllability
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Small-time controllability

The small-time controllability problem

Given 1,11 € 8" and T > 0, find v : [0,7] = R™ with 7 < T such that
¢(77 u, wo) = wl-
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The small-time controllability problem

Given 1,11 € 8" and T > 0, find v : [0,7] = R™ with 7 < T such that
¢(77 u, wo) = wl-

The small-time approximate controllability problem

Given 19,11 € 8", and an error € > 0, find u: [0,7] - R™ with 7 < ¢
such that (7, u, 1) — 1| < e.

We say that the equation is small-time (approximately) controllable if the
small-time (approximate) controllability problem is solvable for every
o, 1 € S™.

Min-time
Min-time(to, ¥1) = inf{t = 0: 3u: [0, t] > R™ s.t. ¥(t, u, 1) = 11}
The min-time of a system is the sup{min-time(¢g, ¥1), %o, ¢1 € SV}.

Small-time controllability means that min-time(¢g, 1) = 0 for any
o, 11 € SV, or equivalently that its min-time is 0. 15 of 20



A criterium for small-time controllability

Theorem

The Schrédinger equation for the propagator is small-time controllable
iff® Lie{iHy, ..., iHn} = u(N). In particular, if Lie{iHy, ..., iHn} = u(N)
the Schrodinger equation for the state is small-time controllable.

3 Agrachev, Boscain, Gauthier, Sigalotti; A note on time-zero controllability
and density of orbits for quantum systems. Proceedings of IEEE 56th Annual
Conference on Decision and Control (CDC) (2017)

“D'Alessandro; Small time controllability of systems on compact Lie groups
and spin angular momentum. J. Math. Phys. 42, 4488 (2001) 16 of 20
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Small-time controllability of scalar-input systems
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Example (1/2-spin)

Thanks to the commutation relations satisfied by the Pauli matrices, and
by the criterium for controllability, the equation

(D) = (02 + u(t)oy o),

with u(t) e R v € C?, 9| = 1, is controllable.

5Khaneja, Brockett, Glaser; Time Optimal Control in Spin Systems.
Physical review A, 63(3), (2000)
®Agrachev, Chambrion: An estimation of the controllability time for
single-input systems on compact Lie Groups, ESAIM COCV (2006)
"Rossi, Gauthier, A universal gap for non-spin quantum control systems,
Proc. AMS (2021) 17 of 20
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Example (1/2-spin)

Thanks to the commutation relations satisfied by the Pauli matrices, and
by the criterium for controllability, the equation

(D) = (02 + u(t)oy o),

with u(t) e R ¢ € C2,|[¢| = 1, is controllable. The criterium for STC is
not satisfied. In fact, it is not STC.Characterization of the min-time:

Theorem®
Given any U € U(2), there exists a unique 7 € [0, 27) such that
U = U1e7% U, where Us, U; € e®9<. Moreover, 7 =min-time(/, U).

Estimating® the min-time is an (open) problem” with important
technological consequences.

5Khaneja, Brockett, Glaser; Time Optimal Control in Spin Systems.
Physical review A, 63(3), (2000)
®Agrachev, Chambrion: An estimation of the controllability time for
single-input systems on compact Lie Groups, ESAIM COCV (2006)
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Swapping the eigenstates of H; takes long time

We consider Z1(t) = (A+ uB)y(t), ¢ € SV.

Theorem?®

If m=1and N > 2, the equation for the state is not small-time
controllable.

8Beauchard, Coron, Teismann, Minimal time for the bilinear control of
Schrédinger equations, Sytems & Control Letters 71, 2014 18 of 20
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We consider Z1(t) = (A+ uB)y(t), ¢ € SV.

Theorem?®

If m=1and N > 2, the equation for the state is not small-time
controllable.

Let v(t) = So s)ds, ¢(t) = e~V (e(t), then

d —V v
a(j)(t) — e V(B A (DB y(¢),

Let e; eigenbasis for B: Bej = bjej, bj € iR. Then
(1), €] = Ko(t), ).
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Swapping the eigenstates of H; takes long time

We consider Z1(t) = (A+ uB)y(t), ¢ € SV.

Theorem?®

If m=1and N > 2, the equation for the state is not small-time
controllable.

Let v(t) = So s)ds, ¢(t) = e~ (e)(t), then
d —v(t)B v(t)B
D o(t) — 0B acOR¢).

Let e; eigenbasis for B: Bej = bjej, bj € iR. Then
K(t), €l = {&(t), €j)|.-Hence
K¥(t), &)| — [Kvbo, )| = Ko(t), e — (o, &)] < [{b(t) — o, &)
= K] #/(5)ds, )] < £14] = min-time(e;, &) > 1/]Al.
0

What happens if A is unbounded?
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An example of a STC scalar-input system

The group of real 2 x 2 matrices with det=1 is SL(2). Its Lie algebra is
given by the 2 x 2 real traceless matrices s[(2), with basis:

Q0 (D )

Commutation relations: [a, b] = ¢, [a,c] = 2a, [b, c] = —2b.

Theorem®

g =(a+ub)g,ge SL(2),is STC.
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Theorem®
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Ingredients:

2
b 226y b
o e ure™@ TZ)e“rHe“baSTHO,foranyueR.
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The group of real 2 x 2 matrices with det=1 is SL(2). Its Lie algebra is
given by the 2 x 2 real traceless matrices s[(2), with basis:

0 6 )

Commutation relations: [a, b] = ¢, [a,c] = 2a, [b, c] = —2b.

Theorem®

g =(a+ub)g,ge SL(2),is STC.

Ingredients:

_ub _202by b
o e Uz ) euz , eub 35 7 5 (), for any ue R.

o elog(r"¥)cgsTaglog(rV2e) _ gsa for any s, 7 > 0.

s(a—b) sin(s)  cos(s)) . . :
o ¢ = . is periodic (thus recurrent!) in s.

—cos(s) sin(s)
Hence | can generate e5(®=%) s < 0.
ion, harmonic oscillator: a = iA, b = i|x]?.
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To be continued...
Thanks for your attention!
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