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Non-resonant chain of connectedness (NRCC)

e How to check if Lie{iHo, iH1} = su(N)?
o If Lie{iHo, iH1} = u(N), find an explicit control steering 1)y to 1.

Turinici, On the controllability of bilinear quantum systems. Mathematical
models and methods for ab initio Quantum Chemistry (2000) 3 of 19
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Non-resonant chain of connectedness (NRCC)

e How to check if Lie{iHo, iH1} = su(N)?
o If Lie{iHo, iH1} = u(N), find an explicit control steering 1)y to 1.
Let {\ )Y, = R, {¢y}R_; = SN eigenvalues and o.n. eigenvectors of Ho:
Hoow = Mecdies (P, dj) = Ok j-

Let wk := Ak+1 — Ak, spectral gaps (or frequencies) of the free system.

Theorem?

Suppose wy # w; for every k # j, and {(¢;, Hi¢x) # 0 iff k = j + 1. Then
Lie{iHo, iH1} = su(N).
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Proof of the NRCC criterium |

Let e «x be the N x N matrix with 1 only on row j and column k, 0
otherwise. Let

Ejk = €k —exjs  Fjk = igjk + iewj,  Djx = iejj — ek

be the standard basis of su(N).
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Proof of the NRCC criterium |

Let e «x be the N x N matrix with 1 only on row j and column k, 0
otherwise. Let

Ejk = €k —exjs  Fjk = igjk + iewj,  Djx = iejj — ek

be the standard basis of su(N).For simplicity of notations, let us assume
that iHy = 37, bjEj 41 (the other cases can be treated analogously).
Since

[Ej k> Ek,n) = Ejny [iHos Eji) = —i(Aj — M) Fik,  [Ejies Fiok) = 2Dj

we are left to prove that E; ;1 € Lie{iHy, iH1} for every
j=1,...,N—1We have

N
ad,f’,_,oiHl = Z(I’wj)nbjEj.’JLFl./
j=1
where adgA = [A, B], adgA = [ad} ‘A, B].
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Proof of the NRCC criterium |l

We thus have

1 e 1 biEi o iHq
iwl ce iw/\/ b2E2_]3 ‘dd,'Ho I'Hl
(I'W1)N71 (I'wN)Nil bNEN—l,N ad,’-).l_lgliHl
=V
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We thus have

1 . 1 bl E1_2 ’Hl
iwy S iwy bo E273 adiHo iHy
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=V

Then V is a Vandermonde matrix, hence

det V=[] (jw—iwe) #0,

1<j<k<N-1

thus V is invertible.
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1 . 1 bl E1_2 ’Hl
iwy S iwy bo E273 adiHo iHy
(iw1)N71 (in)N’l bNEN—l,N adl’-).l_lzliHl
=V

Then V is a Vandermonde matrix, hence

det V=[] (jw—iwe) #0,

1<j<k<N-1

thus V is invertible. This implies that Ej j1 € Lie{iHo, iH1} for every
j=1,... N—1.
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Extension to co-dimensional systems and harmonic oscillator
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NRCC in oo dimensions

Theorem

Suppose Hy has purely point spectrum and Hg + uH; is self-adjoint
for u > 0 small enough. Suppose wy # w; for every k # j, and

(¢j, Hiok) # 0 iff k = j £ 1. Then the equation is approximately
controllable.

Note that if Hy is bounded, Hy + uH; is self-adjoint for all u € R,
but we can also consider situations in which H; is unbounded (e.g.,
Ho-bounded).

2Boscain, Caponigro, Chambrion, Sigalotti; A weak spectral condition for
the controllability of the bilinear Schrédinger equation with application to the
control of a rotating planar molecule. Comm. Math. Phys. 311, pages
423-455, (2012). 6 of 19



Example: Quantum Rotor

Model for a rotating rigid molecule, or a BEC (neglecting Gross-Pitaevskii
state-nonlinearity) with control on the depth of the optical lattice:

i0e(x, t) = [—65 + u(t) cos(x)} Y(x,t), xeTt=S5"

+o +o
YpeSicH=12SC)=1{= Z VD, Z [Y]? < oo ¢,
k=0 k=0

Ho = =2, Hy =cos(x), ¢o=1/V2m, ¢x = cos(kx)/+/x.

and 7(73(/)1( = kzc')k
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Example: Quantum Rotor

Model for a rotating rigid molecule, or a BEC (neglecting Gross-Pitaevskii
state-nonlinearity) with control on the depth of the optical lattice:

o (x, t) = [—af +u(t) cos(x)] b(x,t), xeT!=5!

+o +o
YpeSzcH=L3S,C)={¢= Z VD, Z [Yx]? < oo
k=0 k=0

Ho = —02, Hy =cos(x), ¢o=1/vV2m, ¢ = cos(kx)/+/x.
and —02¢x = k®>px.So wi = 2k + 1 and wy # wj if k # j. Moreover

27
(@j, Hidw) = J cos(jx)cos(x)cos(kx)dx #0 < k = j+ 1.
0
The Theorem implies that this equation is approximately controllable.
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Example: Harmonic Oscillator
i0ep(x, t) = <—(7§ +x° + u(t)x) P(x,t), xeR

beSpcH=LRC) = (Y= dutn, 3 1§l < o0},
n=0 n=0

Ho= -0 +x*, H
{pn, Hipm) # 0 iff m = n+ 1 but (=02 + x*)¢n
for every j, k € N.

= X,

(n+ %)¢n, hence wj = wi

3Rouchon, Mirrahimi: Controllability of quantum harmonic oscillators, IEEE
Trans. Automat. Control, 49 (2004), pp. 745-747.

“Beauchard, Pozzoli: Examples of small-time controllable Schrédinger
equations. Annales Henri Poincaré (2025)
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Example: Harmonic Oscillator

i0ep(x, t) = <—(7§ +x° + u(t)x) P(x,t), xeR

YeSacH = BRC) == dutn O [0 < 0},
n=0 n=0

2 2
Ho = —0; + x°, Hi = x,

{pn, Hipmy # 0 iff m = n £ 1 but (=07 + x*)¢n = (n + £)¢n, hence w; = wi
for every j, k € N.

Theorem?3

The harmonic oscillator is not approximately controllable. One can only
control (in small-time) the average position and momentum of ):

X(t)) = (1), xip(t)) € R, <p(t)) = (o(t), idxh(t)) € R.

For W(x) # x, (ST-)controllability can hold.*

3Rouchon, Mirrahimi: Controllability of quantum harmonic oscillators, IEEE
Trans. Automat. Control, 49 (2004), pp. 745-747.

“Beauchard, Pozzoli: Examples of small-time controllable Schrédinger
equations. Annales Henri Poincaré (2025) 8 of 19




Controlling {x(t)) and {p(t)) in har. oscillator |

Consider the ansatz
b(t,x) = B0t x —q(2)).

One checks that ¢ solves the controlled quantum harmonic oscillator
equation iff (p, q) € R? solves the controlled classical harmonic
oscillator equations

q =
F= —4q 2u,
(p,q)(0) = (0,0),
(where 0 is defined by 6(t) := So (|q -1 r(s)\2) ds, and is an

irrelevant global phase) and f solves the quantum harmonic oscillator
equation WITHOUT control

{ /.(?tg(tﬂy) = (_A +y2)£(t7Y)7 (t7y) € (07 T) x R,
5(0 ) - 2/]0-

9 of 19



Controlling {x(t)) and {p(t)) in har. oscillator I

Hence v is completely determined by g, p. Moreover

x(t)) =&(t), xE(t)) + q(t), {p(t)) =&(t),i0x&(t)) — %’

hence ({x(t)),{p(t))) is small-time controllable iff (g, r) is.

5See, e.g., Theorem 1.1 in the book of E. Trélat, Control in Finite and
Infinite Dimension. 10 of 19
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Controlling {x(t)) and {p(t)) in har. oscillator I

Hence v is completely determined by g, p. Moreover

(b)) = &(t), xE(t)) + q(t),  {p(t)) = (&(t),i0x&(t)) — %7

hence ({x(t)),{p(t))) is small-time controllable iff (g, r) is.Let us prove
that (g, r) is controllable: we use the Kalman condition.

Theorem

|

A n-dim. linear control system z = Az + uB, ze R",u e R™, is
controllable in any time iff its Kalman matrix (B, AB, ..., A""1B) has
rank n.

We write our 2-dim. system for z = (q, p) in the form
d(q

Hence the Kalman matrix (B, AB) < 0 ) has rank 2.

5See, e.g., Theorem 1.1 in the book of E. Trélat, Control in Finite and
Infinite Dimension. 10 of 19



Conically connected spectra and controllability
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Conically connected spectra

Consider the spectrum X(u) of H(u) = Hp + ij:l ujH; as a function of
ueR™ m=>=2:

R™ 5 u— X(u):={M(u),..., \n(v)} e RV,

where A\ (u) < -+ < An(uw).

11 of 19



Conically connected spectra

Consider the spectrum X(u) of H(u) = Hp + ij:l ujH; as a function of
ueR™ m=>=2:

R™ 5 u— X(u):={M(u),..., \n(v)} e RV,

where A\ (u) < -+ < Ay(u).We say that o € R™ is a conical
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Conically connected spectra

Consider the spectrum X(u) of H(u) = Hp + ij:l ujH; as a function of
ueR™ m=>=2:

R™ 3 u— ¥(u) = {\(v),..., \w(u)} e RV,

where A\ (u) < -+ < Ay(u).We say that o € R™ is a conical
intersection between \; and A1 if \;(4) = \j11(0) has multiplicity two
and there exist C > 0 such that

It

¢ SNl + ) =X+ tn) < Clt],

for any v € R™ unit vector and t small enough.

Conically connected spectrum

We say that the spectrum X(-) of H(:) is conically connected if all
eigenvalue intersections are conical and for every j there exists a conical
intersection u; between \; and \jy1, with \/(Tj) simple if [ # j,j + 1.

11 of 19
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Fig. 2. A conically connected spectrum in the case m = 2
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CCS implies controllability

Theorem® (finite-dimensional case)

Let m > 2. If X() is conically connected, the Schrddinger equation for
the propagator (hence, for the state) is controllable.

The Theorem is false if m = 1: e.g.,

Ho = diag(0,1,2), H; = diag(1,1,0). The spectrum of H(u) is
Y(u) = {u,u+ 1,2}, hence is conically connected, but clearly
Lie{iHo, iH1} contains only diagonal matrices hence is not su(3).

5Boscain, Gauthier, Rossi, Sigalotti; Approximate Controllability, Exact
Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical
Systems. Commun. Math. Phys. (2014) 14 of 19



CCS implies controllability

Theorem® (finite-dimensional case)

Let m > 2. If X() is conically connected, the Schrddinger equation for
the propagator (hence, for the state) is controllable.

The Theorem is false if m = 1: e.g.,

Ho = diag(0,1,2), H; = diag(1,1,0). The spectrum of H(u) is
Y(u) = {u,u+ 1,2}, hence is conically connected, but clearly
Lie{iHo, iH1} contains only diagonal matrices hence is not su(3).

Theorem (infinite-dimensional case)

Let m > 2. Suppose that Hy has purely point spectrum and that H(u) is
self-adjoint for all v € R™. If £(-) is conically connected, the Schrédinger
equation for the state is approximately controllable.

5Boscain, Gauthier, Rossi, Sigalotti; Approximate Controllability, Exact
Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical
Systems. Commun. Math. Phys. (2014) 14 of 19



Example: Eberly-Law model

Eo aoU 0 0 0

ol E1 ,801) 0 0

H(u, ’U) — 0 ,6011 E2 a1u 0
0 0 a1u E3 ,6111

Eigenvalues intersections happen only if u =0 or v = 0.

"Eberly, Law: Arbitrary Control of a Quantum Electromagnetic Field, Phys.
Rev. Lett. 76 (1996) 15 of 19



Example: Eberly-Law model

Eg aoU 0 0 0

ol E1 ,801) 0 0

H(u, ’U) — 0 ,6011 E2 a1 0
0 0 a1u E3 ,6111

Eigenvalues intersections happen only if u =0 or v = 0.

o EO = 1./ E1 = 2,E2 = 3./ E3 = 5,0[0 = Q1 = ﬂo =1 conically
connected spectrum, hence controllable.

"Eberly, Law: Arbitrary Control of a Quantum Electromagnetic Field, Phys.
Rev. Lett. 76 (1996) 15 of 19



Example: Eberly-Law model

Eo o 0 0 0
o E1 ,801) 0 0

H(u, ’U) — 0 ,6011 E2 a1y 0
0 0 a1u E3 ﬁ]’u

Eigenvalues intersections happen only if u =0 or v = 0.

e Eg=E =1,E = E3=2,00 = a1 = By = 1: intersections are not
conical, and pile up. The controllability analysis is more delicate®.

8Liang, Boscain, Sigalotti; Controllability of quantum systems having weakly
conically connected spectrum. SIAM J. Control Optim. (2025) 16 of 19
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Resonant control for eigenstates transfer

There is an averaging technique for realizing eigenstate transfer.

9Chambrion; Periodic excitations of bilinear quantum systems. Automatica
48, 9, Pages 2040-2046 (2012).

10Caponigro, Sigalotti; Exact controllability in projections of the bilinear
Schrédinger equation. SIAM J Control Optim 56, 4, pp. 2901=2920 (2018). 17 of 19



Resonant control for eigenstates transfer

There is an averaging technique for realizing eigenstate transfer.

Theorem® (frequency absorption)
Suppose (¢, H1¢;) # 0. Take a periodic control law (T = 27/|\j — A«|)

1

“(4) = e
W) = ey 2 T

cos(|Aj — Aklt).
If all other spectral gaps w of Hy satisfies w # |A; — A«|, then
lim (T /e, u", ¢) — “dulln = 0,

(for some irrelevant global phase 6(¢) € R).

We sketch the proof in finite dimensions, but the statement holds also in
infinite dimensions when Hy has purely point spectrum'®. Note that this
control law is bounded (uniformly w.r.t. €).

9Chambrion; Periodic excitations of bilinear quantum systems. Automatica
48, 9, Pages 2040-2046 (2012).

10Caponigro, Sigalotti; Exact controllability in projections of the bilinear
Schrédinger equation. SIAM J Control Optim 56, 4, pp. 2901=2920 (2018). 17 of 19



Interaction picture

Let A= —iHo, B = —iH;. Consider ¢(t) = e ") (t) where

%’L)(t) = (A+ u(t)B)y(t).
Then, d
Z0(0) = u(t)e”Beo(t).

Hence, if we control ¢ towards an eigenstate ¢y, we are also controlling
1) towards ¢, (modulo an irrelevant global phase e*+).
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Interaction picture

Let A= —iHo, B = —iH;. Consider ¢(t) = e ") (t) where
d

Sp(t) = (A+ u(D)B)(0).

Then,

% 5(t) = u(t)e A Be ().

Hence, if we control ¢ towards an eigenstate ¢y, we are also controlling
1) towards ¢, (modulo an irrelevant global phase e*+).
Notice also that, by computing the exponential series,

exp(tEj k) = cos(t)(ejj + exk) + sin(t)E;j «,

hence exp(5 Ej «)¢; = Ejkdj = —¢i swaps the eigenstates ¢; and ¢y. It
thus suffices to show that we are controlling the propagator towards
exp(5 Ej k).
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We need to study, as ¢ — 0,

1
(¢x, Boj)

T/e
¢(T/e, ue, ) = exp ( g%f cos(|Aj — /\klf)etABetAdt> ;.
0
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We need to study, as ¢ — 0,
1 Te [T/° —tA o tA ,
d(T /e, us, pj) = exp B2 T cos(|\j — Ak[t)e” "'Be”'dt | ¢;.
’ J ]

We note that
e T/e

- {pm,cos(|\j — Ax|t)e” " Be™ ¢, dt
0

)\j — )\k‘t)dt

- rT/e
=(m, Bdny— f ' Am)t cos(
T Jo

(6 Bdmd,  1An— Anl = Iy — Al
e—0 |0, otherwise
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We need to study, as ¢ — 0,

1 Te (/¢ _ ‘
&(T /e, ue, ¢j) = exp <<(Z5/<B¢‘>2T J cos(|\j — Ak|t)e tABe“‘dt) ?;.
’ J ]

We note that

T/e
; (Sm, cos(|A; — Ai|t)e " BePp,)dt
0

)\j — )\k‘t)dt

- rT/e
=(m, Bdny— f ' Am)t cos(
T Jo

(6 Bdmd,  1An— Anl = Iy — Al
e—0 |0, otherwise

An— Am| = |Aj = k| only if (m, n) = (j, k) or (k,j). So, € — 0,

T/e
Te tA tA , T
5T B hi — —_E: = — .
exp <<d)k Boy2 T J cos(|Aj — Ak[t)e” "' Be dt> @j — exp (2 j,k) ;i Dk
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Thanks for your attention!
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