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Non-resonant chain of connectedness (NRCC)

‚ How to check if LietiH0, iH1u “ supNq?

‚ If LietiH0, iH1u “ upNq, find an explicit control steering ψ0 to ψ1.

Let tλkuNk“1 Ă R, tϕkuNk“1 Ă SN eigenvalues and o.n. eigenvectors of H0:

H0ϕk “ λkϕk , xϕk , ϕjy “ δk,j .

Let ωk :“ λk`1 ´ λk , spectral gaps (or frequencies) of the free system.

Theorem1

Suppose ωk ‰ ωj for every k ‰ j , and xϕj ,H1ϕky ‰ 0 iff k “ j ˘ 1. Then
LietiH0, iH1u “ supNq.

1Turinici, On the controllability of bilinear quantum systems. Mathematical
models and methods for ab initio Quantum Chemistry (2000) 3 of 19
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Proof of the NRCC criterium I

Let ej,k be the N ˆ N matrix with 1 only on row j and column k, 0
otherwise. Let

Ej,k “ ej,k ´ ek,j , Fj,k “ iej,k ` iek,j , Dj,k “ iej,j ´ iek,k

be the standard basis of supNq.

For simplicity of notations, let us assume
that iH1 “

řn
j“1 bjEj,j`1 (the other cases can be treated analogously).

Since

rEj,k ,Ek,ns “ Ej,n, riH0,Ej,k s “ ´ipλj ´ λkqFj,k , rEj,k ,Fj,k s “ 2Dj,k ,

we are left to prove that Ej,j`1 P LietiH0, iH1u for every
j “ 1, . . . ,N ´ 1.We have

adn
iH0

iH1 “

N
ÿ

j“1

piωjq
nbjEj,j`1,

where adBA “ rA,Bs, adk
BA “ radk´1

B A,Bs.
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Proof of the NRCC criterium II

We thus have
¨
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‹
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.

Then V is a Vandermonde matrix, hence

detV “
ź

1ďjăkďN´1

piωj ´ iωkq ‰ 0,

thus V is invertible.This implies that Ej,j`1 P LietiH0, iH1u for every
j “ 1, . . . ,N ´ 1.
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NRCC in 8 dimensions

Theorem2

Suppose H0 has purely point spectrum and H0 ` uH1 is self-adjoint
for u ą 0 small enough. Suppose ωk ‰ ωj for every k ‰ j , and
xϕj ,H1ϕky ‰ 0 iff k “ j ˘ 1. Then the equation is approximately
controllable.

Note that if H1 is bounded, H0 ` uH1 is self-adjoint for all u P R,
but we can also consider situations in which H1 is unbounded (e.g.,
H0-bounded).

2Boscain, Caponigro, Chambrion, Sigalotti; A weak spectral condition for
the controllability of the bilinear Schrödinger equation with application to the
control of a rotating planar molecule. Comm. Math. Phys. 311, pages
423–455, (2012). 6 of 19



Example: Quantum Rotor

Model for a rotating rigid molecule, or a BEC (neglecting Gross-Pitaevskii
state-nonlinearity) with control on the depth of the optical lattice:

iBtψpx , tq “

”

´B2
x ` uptq cospxq

ı

ψpx , tq, x P T1 “ S1

ψ P SL2 Ă H “ L2
epS1,Cq “

$

&

%

ψ “

`8
ÿ

k“0

pψkϕk ,
`8
ÿ

k“0

| pψk |2 ă 8

,

.

-

,

H0 “ ´B2
x , H1 “ cospxq, ϕ0 “ 1{

?
2π, ϕk “ cospkxq{

?
π.

and ´B2
xϕk “ k2ϕk .

So ωk “ 2k ` 1 and ωk ‰ ωj if k ‰ j . Moreover

xϕj ,H1ϕky “

ż 2π

0
cospjxqcospxqcospkxqdx ‰ 0 ô k “ j ˘ 1.

The Theorem implies that this equation is approximately controllable.
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Example: Harmonic Oscillator
iBtψpx , tq “

´

´B
2
x ` x2

` uptqx
¯

ψpx , tq, x P R

ψ P SL2 Ă H “ L2
pR,Cq “ tψ “

8
ÿ

n“0

pψnϕn,
8
ÿ

n“0

| pψn|
2

ă 8u,

H0 “ ´B
2
x ` x2, H1 “ x ,

xϕn,H1ϕmy ‰ 0 iff m “ n ˘ 1 but p´B
2
x ` x2

qϕn “ pn ` 1
2 qϕn, hence ωj “ ωk

for every j , k P N.

Theorem3

The harmonic oscillator is not approximately controllable. One can only
control (in small-time) the average position and momentum of ψ:

xxptqy “ xψptq, xψptqy P R, xpptqy “ xψptq, iBxψptqy P R.

For W pxq ‰ x , (ST-)controllability can hold.4

3Rouchon, Mirrahimi: Controllability of quantum harmonic oscillators, IEEE
Trans. Automat. Control, 49 (2004), pp. 745–747.

4Beauchard, Pozzoli: Examples of small-time controllable Schrödinger
equations. Annales Henri Poincaré (2025) 8 of 19
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Controlling xxptqy and xpptqy in har. oscillator I

Consider the ansatz

ψpt, xq “ e ip
1
2 rptq¨x`θptqqξpt, x ´ qptqq.

One checks that ψ solves the controlled quantum harmonic oscillator
equation iff pp, qq P R2 solves the controlled classical harmonic
oscillator equations

$

’

&

’

%

9q “ r ,
9r “ ´4q ´ 2u,
pp, qqp0q “ p0, 0q,

(where θ is defined by θptq :“
şt

0

´

|qpsq|2 ´ 1
4 |rpsq|2

¯

ds, and is an
irrelevant global phase) and ξ solves the quantum harmonic oscillator
equation WITHOUT control

"

iBtξpt, yq “ p´∆ ` y2qξpt, yq, pt, yq P p0,T q ˆ R,
ξp0, .q “ ψ0.

9 of 19



Controlling xxptqy and xpptqy in har. oscillator II
Hence ψ is completely determined by q, p. Moreover

xxptqy “ xξptq, xξptqy ` qptq, xpptqy “ xξptq, iBxξptqy ´
rptq

2
,

hence pxxptqy, xpptqyq is small-time controllable iff pq, rq is.

Let us prove
that pq, rq is controllable: we use the Kalman condition.

Theorem5

A n-dim. linear control system 9z “ Az ` uB, z P Rn, u P Rm, is
controllable in any time iff its Kalman matrix pB,AB, ...,An´1Bq has
rank n.

We write our 2-dim. system for z “ pq, pq in the form

d

dt

˜

q
r

¸

“

˜

0 1
´4 0

¸

looooomooooon

A

˜

q
r

¸

` u

˜

0
´2

¸

loomoon

B

.

Hence the Kalman matrix pB,ABq “

ˆ

0 ´2
´2 0

˙

has rank 2.

5See, e.g., Theorem 1.1 in the book of E. Trélat, Control in Finite and
Infinite Dimension. 10 of 19
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Conically connected spectra

Consider the spectrum Σpuq of Hpuq “ H0 `
řm

j“1 ujHj as a function of
u P Rm,m ě 2:

Rm Q u ÞÑ Σpuq :“ tλ1puq, . . . , λNpuqu P RN ,

where λ1puq ď ¨ ¨ ¨ ď λNpuq.

We say that ru P Rm is a conical
intersection between λj and λj`1 if λjpruq “ λj`1pruq has multiplicity two
and there exist C ą 0 such that

|t|

C
ď λj`1pru ` tηq ´ λjpru ` tηq ď C |t|,

for any v P Rm unit vector and t small enough.

Conically connected spectrum
We say that the spectrum Σp¨q of Hp¨q is conically connected if all
eigenvalue intersections are conical and for every j there exists a conical
intersection ruj between λj and λj`1, with λlprujq simple if l ‰ j , j ` 1.

11 of 19
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CCS implies controllability

Theorem6 (finite-dimensional case)

Let m ě 2. If Σp¨q is conically connected, the Schrödinger equation for
the propagator (hence, for the state) is controllable.

The Theorem is false if m “ 1: e.g.,
H0 “ diagp0, 1, 2q,H1 “ diagp1, 1, 0q. The spectrum of Hpuq is
Σpuq “ tu, u ` 1, 2u, hence is conically connected, but clearly
LietiH0, iH1u contains only diagonal matrices hence is not sup3q.

Theorem (infinite-dimensional case)

Let m ě 2. Suppose that H0 has purely point spectrum and that Hpuq is
self-adjoint for all u P Rm. If Σp¨q is conically connected, the Schrödinger
equation for the state is approximately controllable.

6Boscain, Gauthier, Rossi, Sigalotti; Approximate Controllability, Exact
Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical
Systems. Commun. Math. Phys. (2014) 14 of 19
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Example: Eberly-Law model7

Eigenvalues intersections happen only if u “ 0 or v “ 0.

‚ E0 “ 1,E1 “ 2,E2 “ 3,E3 “ 5, α0 “ α1 “ β0 “ 1: conically
connected spectrum, hence controllable.

7Eberly, Law: Arbitrary Control of a Quantum Electromagnetic Field, Phys.
Rev. Lett. 76 (1996) 15 of 19
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Example: Eberly-Law model

Eigenvalues intersections happen only if u “ 0 or v “ 0.

‚ E0 “ E1 “ 1,E2 “ E3 “ 2, α0 “ α1 “ β0 “ 1: intersections are not
conical, and pile up. The controllability analysis is more delicate8.

8Liang, Boscain, Sigalotti; Controllability of quantum systems having weakly
conically connected spectrum. SIAM J. Control Optim. (2025) 16 of 19
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Resonant control for eigenstates transfer
There is an averaging technique for realizing eigenstate transfer.

Theorem9 (frequency absorption)
Suppose xϕk ,H1ϕjy ‰ 0. Take a periodic control law (T “ 2π{|λj ´ λk |)

uε
ptq “

1
xϕk , iH1ϕjy

π

2
ε

T
cosp|λj ´ λk |tq.

If all other spectral gaps ω of H0 satisfies ω ‰ |λj ´ λk |, then

lim
εÑ0

}ψpT {ε, uε, ϕjq ´ e iθϕk}H “ 0,

(for some irrelevant global phase θpϵq P R).

We sketch the proof in finite dimensions, but the statement holds also in
infinite dimensions when H0 has purely point spectrum10. Note that this
control law is bounded (uniformly w.r.t. ε).

9Chambrion; Periodic excitations of bilinear quantum systems. Automatica
48, 9, Pages 2040-2046 (2012).

10Caponigro, Sigalotti; Exact controllability in projections of the bilinear
Schrödinger equation. SIAM J Control Optim 56, 4, pp. 2901=2920 (2018). 17 of 19
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Interaction picture

Let A “ ´iH0,B “ ´iH1. Consider ϕptq “ e´tAψptq where

d

dt
ψptq “ pA ` uptqBqψptq.

Then,
d

dt
ϕptq “ uptqe´tABetAϕptq.

Hence, if we control ϕ towards an eigenstate ϕk , we are also controlling
ψ towards ϕk (modulo an irrelevant global phase e itλk ).

Notice also that, by computing the exponential series,

expptEj,kq “ cosptqpej,j ` ek,kq ` sinptqEj,k ,

hence exppπ
2Ej,kqϕj “ Ej,kϕj “ ´ϕk swaps the eigenstates ϕj and ϕk . It

thus suffices to show that we are controlling the propagator towards
exppπ

2Ej,kq.
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Averaging

We need to study, as ε Ñ 0,

ϕpT {ε, uε, ϕjq “ exp

˜

1
xϕk ,Bϕjy

π

2
ε

T

ż T{ε

0
cosp|λj ´ λk |tqe´tABetAdt

¸

ϕj .

We note that

ε

T

ż T{ε

0
xϕm, cosp|λj ´ λk |tqe´tABetAϕnydt

“xϕm,Bϕny
ε

T

ż T{ε

0
e ipλn´λmqt cosp|λj ´ λk |tqdt

ÝÝÝÑ
εÑ0

#

xϕn,Bϕmy, |λn ´ λm| “ |λj ´ λk |

0, otherwise

By hypothesis, |λn ´ λm| “ |λj ´ λk | only if pm, nq “ pj , kq or pk, jq. So, ε Ñ 0,

exp

˜

1
xϕk ,Bϕjy

π

2
ε

T

ż T{ε

0
cosp|λj ´ λk |tqe´tABetAdt

¸

ϕj Ñ exp

ˆ

π

2
Ej,k

˙

ϕj “ ´ϕk .
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Thanks for your attention!
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