Controllability of Schrödinger equations and application to quantum rotors

Eugenio Pozzoli (CNRS, IRMAR, Université de Rennes, France)

24-26 February 2025, Dijon - Winter school on BEC

Controllability of finite-dimensional Schrödinger equations
 Spectral conditions and resonant control
 Controllability of ∞-dimensional Schrödinger equations

Spectral conditions and resonant control

- 1 NRCC and controllability
- 2 Extension to ∞ -dimensional systems and harmonic oscillator
- 3 Conically connected spectra and controllability
- 4 Resonant control

2 Extension to ∞ -dimensional systems and harmonic oscillator

3 Conically connected spectra and controllability

4 Resonant control

Non-resonant chain of connectedness (NRCC)

- How to check if $\operatorname{Lie}\{iH_0, iH_1\} = \mathfrak{su}(N)$?
- If Lie{*iH*₀, *iH*₁} = u(N), find an explicit control steering ψ₀ to ψ₁.

¹Turinici, On the controllability of bilinear quantum systems. Mathematical models and methods for ab initio Quantum Chemistry (2000) 3 of 19

Non-resonant chain of connectedness (NRCC)

- How to check if $\operatorname{Lie}\{iH_0, iH_1\} = \mathfrak{su}(N)$?
- If $\text{Lie}\{iH_0, iH_1\} = \mathfrak{u}(N)$, find an explicit control steering ψ_0 to ψ_1 .

Let $\{\lambda_k\}_{k=1}^N \subset \mathbb{R}, \{\phi_k\}_{k=1}^N \subset S^N$ eigenvalues and o.n. eigenvectors of H_0 :

$$H_0\phi_k = \lambda_k\phi_k, \quad \langle \phi_k, \phi_j \rangle = \delta_{k,j}.$$

Let $\omega_k := \lambda_{k+1} - \lambda_k$, spectral gaps (or frequencies) of the free system.

¹Turinici, On the controllability of bilinear quantum systems. Mathematical models and methods for ab initio Quantum Chemistry (2000) 3 of 19

Non-resonant chain of connectedness (NRCC)

- How to check if $\operatorname{Lie}\{iH_0, iH_1\} = \mathfrak{su}(N)$?
- If $\text{Lie}\{iH_0, iH_1\} = \mathfrak{u}(N)$, find an explicit control steering ψ_0 to ψ_1 .

Let $\{\lambda_k\}_{k=1}^N \subset \mathbb{R}, \{\phi_k\}_{k=1}^N \subset S^N$ eigenvalues and o.n. eigenvectors of H_0 :

$$H_0\phi_k = \lambda_k\phi_k, \quad \langle \phi_k, \phi_j \rangle = \delta_{k,j}.$$

Let $\omega_k := \lambda_{k+1} - \lambda_k$, spectral gaps (or frequencies) of the free system.

Theorem¹

Suppose $\omega_k \neq \omega_j$ for every $k \neq j$, and $\langle \phi_j, H_1 \phi_k \rangle \neq 0$ iff $k = j \pm 1$. Then $\text{Lie}\{iH_0, iH_1\} = \mathfrak{su}(N)$.

¹Turinici, On the controllability of bilinear quantum systems. Mathematical models and methods for ab initio Quantum Chemistry (2000) 3 of 19

Let $e_{j,k}$ be the $N \times N$ matrix with 1 only on row j and column k, 0 otherwise. Let

$$E_{j,k} = e_{j,k} - e_{k,j}, \quad F_{j,k} = ie_{j,k} + ie_{k,j}, \quad D_{j,k} = ie_{j,j} - ie_{k,k}$$

be the standard basis of $\mathfrak{su}(N)$.

Let $e_{j,k}$ be the $N \times N$ matrix with 1 only on row j and column k, 0 otherwise. Let

$$E_{j,k} = e_{j,k} - e_{k,j}, \quad F_{j,k} = ie_{j,k} + ie_{k,j}, \quad D_{j,k} = ie_{j,j} - ie_{k,k}$$

be the standard basis of $\mathfrak{su}(N)$. For simplicity of notations, let us assume that $iH_1 = \sum_{j=1}^n b_j E_{j,j+1}$ (the other cases can be treated analogously).

Let $e_{j,k}$ be the $N \times N$ matrix with 1 only on row j and column k, 0 otherwise. Let

$$E_{j,k} = e_{j,k} - e_{k,j}, \quad F_{j,k} = ie_{j,k} + ie_{k,j}, \quad D_{j,k} = ie_{j,j} - ie_{k,k}$$

be the standard basis of $\mathfrak{su}(N)$. For simplicity of notations, let us assume that $iH_1 = \sum_{j=1}^n b_j E_{j,j+1}$ (the other cases can be treated analogously). Since

$$[E_{j,k}, E_{k,n}] = E_{j,n}, \quad [iH_0, E_{j,k}] = -i(\lambda_j - \lambda_k)F_{j,k}, \quad [E_{j,k}, F_{j,k}] = 2D_{j,k},$$

we are left to prove that $E_{j,j+1} \in \text{Lie}\{iH_0, iH_1\}$ for every $j = 1, \dots, N - 1$.

Let $e_{j,k}$ be the $N \times N$ matrix with 1 only on row j and column k, 0 otherwise. Let

$$E_{j,k} = e_{j,k} - e_{k,j}, \quad F_{j,k} = ie_{j,k} + ie_{k,j}, \quad D_{j,k} = ie_{j,j} - ie_{k,k}$$

be the standard basis of $\mathfrak{su}(N)$. For simplicity of notations, let us assume that $iH_1 = \sum_{j=1}^n b_j E_{j,j+1}$ (the other cases can be treated analogously). Since

$$[E_{j,k}, E_{k,n}] = E_{j,n}, \quad [iH_0, E_{j,k}] = -i(\lambda_j - \lambda_k)F_{j,k}, \quad [E_{j,k}, F_{j,k}] = 2D_{j,k},$$

we are left to prove that $E_{j,j+1} \in \text{Lie}\{iH_0, iH_1\}$ for every $j = 1, \ldots, N - 1$. We have

$$\mathrm{ad}_{iH_0}^n iH_1 = \sum_{j=1}^N (i\omega_j)^n b_j E_{j,j+1},$$

where $\operatorname{ad}_B A = [A, B]$, $\operatorname{ad}_B^k A = [\operatorname{ad}_B^{k-1} A, B]$.

4 of 19

We thus have

$$\underbrace{\begin{pmatrix} 1 & \dots & 1\\ i\omega_1 & \dots & i\omega_N\\ \vdots & & \\ (i\omega_1)^{N-1} & \dots & (i\omega_N)^{N-1} \end{pmatrix}}_{=V} \begin{pmatrix} b_1 E_{1,2}\\ b_2 E_{2,3}\\ \vdots\\ b_N E_{N-1,N} \end{pmatrix} = \begin{pmatrix} iH_1\\ \mathrm{ad}_{iH_0} iH_1\\ \vdots\\ \mathrm{ad}_{iH_0}^{N-1} iH_1 \end{pmatrix}.$$

We thus have

$$\underbrace{\begin{pmatrix} 1 & \dots & 1\\ i\omega_1 & \dots & i\omega_N\\ \vdots & & \\ (i\omega_1)^{N-1} & \dots & (i\omega_N)^{N-1} \end{pmatrix}}_{=V} \begin{pmatrix} b_1 E_{1,2}\\ b_2 E_{2,3}\\ \vdots\\ b_N E_{N-1,N} \end{pmatrix} = \begin{pmatrix} iH_1\\ \mathrm{ad}_{iH_0} iH_1\\ \vdots\\ \mathrm{ad}_{iH_0}^{N-1} iH_1 \end{pmatrix}.$$

Then V is a **Vandermonde matrix**, hence

$$\det V = \prod_{1 \leq j < k \leq N-1} (i\omega_j - i\omega_k) \neq 0,$$

thus V is invertible.

We thus have

$$\underbrace{\begin{pmatrix} 1 & \cdots & 1 \\ i\omega_1 & \cdots & i\omega_N \\ \vdots & & \\ (i\omega_1)^{N-1} & \cdots & (i\omega_N)^{N-1} \end{pmatrix}}_{=V} \begin{pmatrix} b_1 E_{1,2} \\ b_2 E_{2,3} \\ \vdots \\ b_N E_{N-1,N} \end{pmatrix} = \begin{pmatrix} iH_1 \\ \mathrm{ad}_{iH_0} iH_1 \\ \vdots \\ \mathrm{ad}_{iH_0}^{N-1} iH_1 \end{pmatrix}.$$

Then V is a **Vandermonde matrix**, hence

$$\det V = \prod_{1 \leq j < k \leq N-1} (i\omega_j - i\omega_k) \neq 0,$$

thus V is invertible. This implies that $E_{j,j+1} \in \text{Lie}\{iH_0, iH_1\}$ for every $j = 1, \dots, N-1$.

2 Extension to ∞ -dimensional systems and harmonic oscillator

3 Conically connected spectra and controllability

Theorem²

Suppose H_0 has purely point spectrum and $H_0 + uH_1$ is self-adjoint for u > 0 small enough. Suppose $\omega_k \neq \omega_j$ for every $k \neq j$, and $\langle \phi_j, H_1 \phi_k \rangle \neq 0$ iff $k = j \pm 1$. Then the equation is approximately controllable.

Note that if H_1 is bounded, $H_0 + uH_1$ is self-adjoint for all $u \in \mathbb{R}$, but we can also consider situations in which H_1 is unbounded (e.g., H_0 -bounded).

6 of 19

²Boscain, Caponigro, Chambrion, Sigalotti; A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule. Comm. Math. Phys. 311, pages 423–455, (2012).

Model for a rotating rigid molecule, or a BEC (neglecting Gross-Pitaevskii state-nonlinearity) with control on the depth of the optical lattice:

$$\begin{split} i\partial_t \psi(x,t) &= \left[-\partial_x^2 + u(t)\cos(x) \right] \psi(x,t), \quad x \in \mathbb{T}^1 = S^1 \\ \psi \in \mathcal{S}_{L^2} \subset \mathcal{H} &= L_e^2(S^1,\mathbb{C}) = \left\{ \psi = \sum_{k=0}^{+\infty} \hat{\psi}_k \phi_k, \sum_{k=0}^{+\infty} |\hat{\psi}_k|^2 < \infty \right\}, \\ H_0 &= -\partial_x^2, \quad H_1 = \cos(x), \quad \phi_0 = 1/\sqrt{2\pi}, \quad \phi_k = \cos(kx)/\sqrt{\pi}. \end{split}$$
and $-\partial_x^2 \phi_k = k^2 \phi_k.$

Model for a rotating rigid molecule, or a BEC (neglecting Gross-Pitaevskii state-nonlinearity) with control on the depth of the optical lattice:

$$\begin{split} i\partial_t \psi(x,t) &= \left[-\partial_x^2 + u(t)\cos(x) \right] \psi(x,t), \quad x \in \mathbb{T}^1 = S^1 \\ \psi \in \mathcal{S}_{L^2} \subset \mathcal{H} = L_e^2(S^1,\mathbb{C}) = \left\{ \psi = \sum_{k=0}^{+\infty} \hat{\psi}_k \phi_k, \sum_{k=0}^{+\infty} |\hat{\psi}_k|^2 < \infty \right\}, \\ H_0 &= -\partial_x^2, \quad H_1 = \cos(x), \quad \phi_0 = 1/\sqrt{2\pi}, \quad \phi_k = \cos(kx)/\sqrt{\pi}. \\ \text{and} \quad -\partial_x^2 \phi_k = k^2 \phi_k. \text{So } \omega_k = 2k+1 \text{ and } \omega_k \neq \omega_j \text{ if } k \neq j. \text{ Moreover} \end{split}$$

$$\langle \phi_j, H_1 \phi_k \rangle = \int_0^{2\pi} \cos(jx) \cos(x) \cos(kx) dx \neq 0 \Leftrightarrow k = j \pm 1.$$

The Theorem implies that this equation is approximately controllable.

Example: Harmonic Oscillator

$$i\partial_t \psi(\mathbf{x}, t) = \left(-\partial_x^2 + x^2 + u(t)x\right)\psi(\mathbf{x}, t), \quad x \in \mathbb{R}$$

$$\psi \in \mathcal{S}_{L^2} \subset \mathcal{H} = L^2(\mathbb{R}, \mathbb{C}) = \{ \psi = \sum_{n=0}^{\infty} \hat{\psi}_n \phi_n, \sum_{n=0}^{\infty} |\hat{\psi}_n|^2 < \infty \},$$
$$H_0 = -\partial_x^2 + x^2, \quad H_1 = x,$$

 $\langle \phi_n, H_1 \phi_m \rangle \neq 0$ iff $m = n \pm 1$ but $(-\partial_x^2 + x^2)\phi_n = (n + \frac{1}{2})\phi_n$, hence $\omega_j = \omega_k$ for every $j, k \in \mathbb{N}$.

⁴Beauchard, Pozzoli: Examples of small-time controllable Schrödinger equations. Annales Henri Poincaré (2025)

³Rouchon, Mirrahimi: Controllability of quantum harmonic oscillators, IEEE Trans. Automat. Control, 49 (2004), pp. 745–747.

Example: Harmonic Oscillator

$$i\partial_t \psi(\mathbf{x}, t) = \left(-\partial_x^2 + x^2 + u(t)x\right)\psi(\mathbf{x}, t), \quad x \in \mathbb{R}$$

$$\begin{split} \psi \in \mathcal{S}_{L^2} \subset \mathcal{H} &= L^2(\mathbb{R}, \mathbb{C}) = \{ \psi = \sum_{n=0}^{\infty} \widehat{\psi}_n \phi_n, \sum_{n=0}^{\infty} |\widehat{\psi}_n|^2 < \infty \}, \\ H_0 &= -\partial_x^2 + x^2, \quad H_1 = x, \end{split}$$

 $\langle \phi_n, H_1 \phi_m \rangle \neq 0$ iff $m = n \pm 1$ but $(-\partial_x^2 + x^2)\phi_n = (n + \frac{1}{2})\phi_n$, hence $\omega_j = \omega_k$ for every $j, k \in \mathbb{N}$.

Theorem³

The harmonic oscillator is not approximately controllable. One can only control (in small-time) the average position and momentum of ψ :

 $\langle x(t) \rangle = \langle \psi(t), x\psi(t) \rangle \in \mathbb{R}, \quad \langle p(t) \rangle = \langle \psi(t), i \partial_x \psi(t) \rangle \in \mathbb{R}.$

For $W(x) \neq x$, (ST-)controllability can hold.⁴

³Rouchon, Mirrahimi: Controllability of quantum harmonic oscillators, IEEE Trans. Automat. Control, 49 (2004), pp. 745–747.

⁴Beauchard, Pozzoli: Examples of small-time controllable Schrödinger equations. Annales Henri Poincaré (2025)

Controlling $\langle x(t) angle$ and $\langle p(t) angle$ in har. oscillator I

Consider the ansatz

$$\psi(t,x) = e^{i\left(\frac{1}{2}r(t)\cdot x + \theta(t)\right)} \xi(t,x-q(t)).$$

One checks that ψ solves the controlled quantum harmonic oscillator equation iff $(p, q) \in \mathbb{R}^2$ solves the **controlled classical harmonic oscillator** equations

$$\dot{q} = r,$$

 $\dot{r} = -4q - 2u,$
 $(p,q)(0) = (0,0),$

(where θ is defined by $\theta(t) := \int_0^t \left(|q(s)|^2 - \frac{1}{4} |r(s)|^2 \right) ds$, and is an irrelevant global phase) and ξ solves the quantum harmonic oscillator equation **WITHOUT control**

$$\begin{cases} i\partial_t \xi(t,y) = (-\Delta + y^2)\xi(t,y), \quad (t,y) \in (0,T) \times \mathbb{R}, \\ \xi(0,.) = \psi_0. \end{cases}$$

Controlling $\langle x(t) angle$ and $\langle p(t) angle$ in har. oscillator II

Hence ψ is completely determined by q, p. Moreover $\langle x(t) \rangle = \langle \xi(t), x\xi(t) \rangle + q(t), \quad \langle p(t) \rangle = \langle \xi(t), i\partial_x \xi(t) \rangle - \frac{r(t)}{2},$

hence $(\langle x(t) \rangle, \langle p(t) \rangle)$ is small-time controllable iff (q, r) is.

⁵See, e.g., Theorem 1.1 in the book of E. Trélat, Control in Finite and Infinite Dimension.

Controlling $\langle x(t) angle$ and $\langle p(t) angle$ in har. oscillator II

Hence ψ is completely determined by q, p. Moreover

 $\langle x(t) \rangle = \langle \xi(t), x\xi(t) \rangle + q(t), \quad \langle p(t) \rangle = \langle \xi(t), i \partial_x \xi(t) \rangle - \frac{r(t)}{2},$

hence $(\langle x(t) \rangle, \langle p(t) \rangle)$ is small-time controllable iff (q, r) is.Let us prove that (q, r) is controllable: we use the *Kalman condition*.

Theorem⁵

A *n*-dim. linear control system $\dot{z} = Az + uB$, $z \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, is controllable in any time iff its Kalman matrix $(B, AB, ..., A^{n-1}B)$ has rank *n*.

⁵See, e.g., Theorem 1.1 in the book of E. Trélat, Control in Finite and Infinite Dimension.

Controlling $\langle x(t) angle$ and $\langle p(t) angle$ in har. oscillator II

Hence ψ is completely determined by q, p. Moreover

 $\langle x(t) \rangle = \langle \xi(t), x\xi(t) \rangle + q(t), \quad \langle p(t) \rangle = \langle \xi(t), i \partial_x \xi(t) \rangle - \frac{r(t)}{2},$

hence $(\langle x(t) \rangle, \langle p(t) \rangle)$ is small-time controllable iff (q, r) is.Let us prove that (q, r) is controllable: we use the *Kalman condition*.

Theorem⁵

A *n*-dim. linear control system $\dot{z} = Az + uB$, $z \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, is controllable in any time iff its Kalman matrix $(B, AB, ..., A^{n-1}B)$ has rank *n*.

We write our 2-dim. system for z = (q, p) in the form

$$\frac{d}{dt}\begin{pmatrix} q\\ r \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1\\ -4 & 0 \end{pmatrix}}_{A} \begin{pmatrix} q\\ r \end{pmatrix} + u \underbrace{\begin{pmatrix} 0\\ -2 \end{pmatrix}}_{B}.$$

Hence the Kalman matrix $(B, AB) = \begin{pmatrix} 0 & -2 \\ -2 & 0 \end{pmatrix}$ has rank 2.

⁵See, e.g., Theorem 1.1 in the book of E. Trélat, Control in Finite and Infinite Dimension.

10 of 19

3 Conically connected spectra and controllability

Conically connected spectra

Consider the spectrum $\Sigma(u)$ of $H(u) = H_0 + \sum_{j=1}^m u_j H_j$ as a function of $u \in \mathbb{R}^m, m \ge 2$:

$$\mathbb{R}^m \ni u \mapsto \Sigma(u) := \{\lambda_1(u), \ldots, \lambda_N(u)\} \in \mathbb{R}^N,\$$

where $\lambda_1(u) \leq \cdots \leq \lambda_N(u)$.

Conically connected spectra

Consider the spectrum $\Sigma(u)$ of $H(u) = H_0 + \sum_{j=1}^m u_j H_j$ as a function of $u \in \mathbb{R}^m, m \ge 2$:

$$\mathbb{R}^m \ni u \mapsto \Sigma(u) := \{\lambda_1(u), \dots, \lambda_N(u)\} \in \mathbb{R}^N,\$$

where $\lambda_1(u) \leq \cdots \leq \lambda_N(u)$. We say that $\widetilde{u} \in \mathbb{R}^m$ is a **conical intersection** between λ_j and λ_{j+1} if $\lambda_j(\widetilde{u}) = \lambda_{j+1}(\widetilde{u})$ has multiplicity two and there exist C > 0 such that

$$\frac{|t|}{C} \leq \lambda_{j+1}(\widetilde{u} + t\eta) - \lambda_j(\widetilde{u} + t\eta) \leq C|t|,$$

for any $v \in \mathbb{R}^m$ unit vector and t small enough.

Conically connected spectra

Consider the spectrum $\Sigma(u)$ of $H(u) = H_0 + \sum_{j=1}^m u_j H_j$ as a function of $u \in \mathbb{R}^m, m \ge 2$:

$$\mathbb{R}^m \ni u \mapsto \Sigma(u) := \{\lambda_1(u), \dots, \lambda_N(u)\} \in \mathbb{R}^N,\$$

where $\lambda_1(u) \leq \cdots \leq \lambda_N(u)$. We say that $\widetilde{u} \in \mathbb{R}^m$ is a **conical intersection** between λ_j and λ_{j+1} if $\lambda_j(\widetilde{u}) = \lambda_{j+1}(\widetilde{u})$ has multiplicity two and there exist C > 0 such that

$$\frac{|t|}{C} \leq \lambda_{j+1}(\widetilde{u} + t\eta) - \lambda_j(\widetilde{u} + t\eta) \leq C|t|,$$

for any $v \in \mathbb{R}^m$ unit vector and t small enough.

Conically connected spectrum

We say that the spectrum $\Sigma(\cdot)$ of $H(\cdot)$ is **conically connected** if all eigenvalue intersections are conical and for every *j* there exists a conical intersection \tilde{u}_j between λ_j and λ_{j+1} , with $\lambda_l(\tilde{u}_j)$ simple if $l \neq j, j + 1$.

(a) A conical intersection

(b) A semi-conical intersection

(c) Piled-up intersections (d) Non-piled-up intersections

Fig. 2. A conically connected spectrum in the case m = 2

Theorem⁶ (finite-dimensional case)

Let $m \ge 2$. If $\Sigma(\cdot)$ is conically connected, the Schrödinger equation for the propagator (hence, for the state) is controllable.

The Theorem is false if m = 1: e.g., $H_0 = \text{diag}(0, 1, 2), H_1 = \text{diag}(1, 1, 0)$. The spectrum of H(u) is $\Sigma(u) = \{u, u + 1, 2\}$, hence is conically connected, but clearly $\text{Lie}\{iH_0, iH_1\}$ contains only diagonal matrices hence is not $\mathfrak{su}(3)$.

⁶Boscain, Gauthier, Rossi, Sigalotti; Approximate Controllability, Exact Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical Systems. Commun. Math. Phys. (2014) 14 of 19

Theorem⁶ (finite-dimensional case)

Let $m \ge 2$. If $\Sigma(\cdot)$ is conically connected, the Schrödinger equation for the propagator (hence, for the state) is controllable.

The Theorem is false if m = 1: e.g., $H_0 = \text{diag}(0, 1, 2), H_1 = \text{diag}(1, 1, 0)$. The spectrum of H(u) is $\Sigma(u) = \{u, u + 1, 2\}$, hence is conically connected, but clearly $\text{Lie}\{iH_0, iH_1\}$ contains only diagonal matrices hence is not $\mathfrak{su}(3)$.

Theorem (infinite-dimensional case)

Let $m \ge 2$. Suppose that H_0 has purely point spectrum and that H(u) is self-adjoint for all $u \in \mathbb{R}^m$. If $\Sigma(\cdot)$ is conically connected, the Schrödinger equation for the state is approximately controllable.

⁶Boscain, Gauthier, Rossi, Sigalotti; Approximate Controllability, Exact Controllability, and Conical Eigenvalue Intersections for Quantum Mechanical Systems. Commun. Math. Phys. (2014) 14 of 19

Example: Eberly-Law model⁷

	1	E_0	$lpha_0 u$	0	0	0	• • •	
H(u,v) =		$lpha_0 u$	E_1	$\beta_0 v$	0	0	• • •	
		0	$\beta_0 v$	E_2	$lpha_1 u$	0	• • •	
		0	0	$lpha_1 u$	E_3	$\beta_1 v$	• • •	
		:	:	:	:	:	:	
	1	•	•	•	•	•	•	

Eigenvalues intersections happen only if u = 0 or v = 0.

⁷Eberly, Law: Arbitrary Control of a Quantum Electromagnetic Field, Phys. Rev. Lett. 76 (1996) 15 of 19

Example: Eberly-Law model⁷

	1	E_0	$lpha_0 u$	0	0	0	•••	
H(u,v) =		$lpha_0 u$	E_1	$\beta_0 v$	0	0	• • •	
		0	$\beta_0 v$	E_2	$lpha_1 u$	0	• • •	
		0	0	$lpha_1 u$	E_3	$\beta_1 v$	•••	
		:	:	:	:	:	:	
	<u>۱</u>	•	•	•	•	•	•	

Eigenvalues intersections happen only if u = 0 or v = 0.

• $E_0 = 1, E_1 = 2, E_2 = 3, E_3 = 5, \alpha_0 = \alpha_1 = \beta_0 = 1$: conically connected spectrum, hence controllable.

⁷Eberly, Law: Arbitrary Control of a Quantum Electromagnetic Field, Phys.
 Rev. Lett. 76 (1996)
 15 of 19

Example: Eberly-Law model

	$ E_0 $	$lpha_0 u$	0	0	0	• • •	
H(u,v) =	$\alpha_0 u$	E_1	$\beta_0 v$	0	0	•••	
	0	$\beta_0 v$	E_2	$lpha_1 u$	0	• • •	
	0	0	$lpha_1 u$	E_3	$\beta_1 v$	• • •	
	(:	÷	÷	÷	÷	÷	

Eigenvalues intersections happen only if u = 0 or v = 0.

E₀ = E₁ = 1, E₂ = E₃ = 2, α₀ = α₁ = β₀ = 1: intersections are not conical, and pile up. The controllability analysis is more delicate⁸.

⁸Liang, Boscain, Sigalotti; Controllability of quantum systems having weakly conically connected spectrum. SIAM J. Control Optim. (2025) 16 of 19

3 Conically connected spectra and controllability

4 Resonant control

Resonant control for eigenstates transfer

There is an averaging technique for realizing eigenstate transfer.

⁹Chambrion; Periodic excitations of bilinear quantum systems. Automatica 48, 9, Pages 2040-2046 (2012).

¹⁰Caponigro, Sigalotti; Exact controllability in projections of the bilinear Schrödinger equation. SIAM J Control Optim 56, 4, pp. 2901=2920 (2018). 17 of 19

Resonant control for eigenstates transfer

There is an averaging technique for realizing eigenstate transfer.

Theorem⁹ (frequency absorption)

Suppose $\langle \phi_k, H_1 \phi_j \rangle \neq 0$. Take a periodic control law $(T = 2\pi/|\lambda_j - \lambda_k|)$

$$u^{arepsilon}(t) = rac{1}{\langle \phi_k, i H_1 \phi_j
angle} rac{\pi}{2} rac{arepsilon}{T} \cos(|\lambda_j - \lambda_k|t).$$

If all other spectral gaps ω of H_0 satisfies $\omega \neq |\lambda_j - \lambda_k|$, then

$$\lim_{\varepsilon \to 0} \|\psi(\mathbf{T}/\varepsilon, \mathbf{u}^{\varepsilon}, \phi_j) - e^{i\theta}\phi_k\|_{\mathcal{H}} = 0,$$

(for some irrelevant global phase $\theta(\epsilon) \in \mathbb{R}$).

We sketch the proof in finite dimensions, but the statement holds also in infinite dimensions when H_0 has purely point spectrum¹⁰. Note that this control law is bounded (uniformly w.r.t. ε).

⁹Chambrion; Periodic excitations of bilinear quantum systems. Automatica 48, 9, Pages 2040-2046 (2012).

¹⁰Caponigro, Sigalotti; Exact controllability in projections of the bilinear Schrödinger equation. SIAM J Control Optim 56, 4, pp. 2901=2920 (2018). 17 of 19

Interaction picture

Let $A = -iH_0, B = -iH_1$. Consider $\phi(t) = e^{-tA}\psi(t)$ where

$$\frac{d}{dt}\psi(t) = (A + u(t)B)\psi(t).$$

Then,

$$\frac{d}{dt}\phi(t) = u(t)e^{-tA}Be^{tA}\phi(t).$$

Hence, if we control ϕ towards an eigenstate ϕ_k , we are also controlling ψ towards ϕ_k (modulo an irrelevant global phase $e^{it\lambda_k}$).

Interaction picture

Let $A = -iH_0, B = -iH_1$. Consider $\phi(t) = e^{-tA}\psi(t)$ where

$$\frac{d}{dt}\psi(t) = (A + u(t)B)\psi(t).$$

Then,

$$\frac{d}{dt}\phi(t) = u(t)e^{-tA}Be^{tA}\phi(t).$$

Hence, if we control ϕ towards an eigenstate ϕ_k , we are also controlling ψ towards ϕ_k (modulo an irrelevant global phase $e^{it\lambda_k}$). Notice also that, by computing the exponential series,

$$\exp(tE_{j,k}) = \cos(t)(e_{j,j} + e_{k,k}) + \sin(t)E_{j,k},$$

hence $\exp(\frac{\pi}{2}E_{j,k})\phi_j = E_{j,k}\phi_j = -\phi_k$ swaps the eigenstates ϕ_j and ϕ_k . It thus suffices to show that we are controlling the propagator towards $\exp(\frac{\pi}{2}E_{j,k})$.

Averaging

We need to study, as $\varepsilon \to {\rm 0,}$

$$\phi(T/\varepsilon, u_{\varepsilon}, \phi_j) = \exp\left(\frac{1}{\langle \phi_k, B\phi_j \rangle} \frac{\pi}{2} \frac{\varepsilon}{T} \int_0^{T/\varepsilon} \cos(|\lambda_j - \lambda_k| t) e^{-tA} B e^{tA} dt\right) \phi_j.$$

Averaging

We need to study, as $\varepsilon \to {\rm 0,}$

$$\phi(T/\varepsilon, u_{\varepsilon}, \phi_j) = \exp\left(\frac{1}{\langle \phi_k, B\phi_j \rangle} \frac{\pi}{2} \frac{\varepsilon}{T} \int_0^{T/\varepsilon} \cos(|\lambda_j - \lambda_k| t) e^{-tA} B e^{tA} dt\right) \phi_j.$$

We note that

$$\frac{\varepsilon}{T} \int_{0}^{T/\varepsilon} \langle \phi_{m}, \cos(|\lambda_{j} - \lambda_{k}|t) e^{-tA} B e^{tA} \phi_{n} \rangle dt$$

$$= \langle \phi_{m}, B \phi_{n} \rangle \frac{\varepsilon}{T} \int_{0}^{T/\varepsilon} e^{i(\lambda_{n} - \lambda_{m})t} \cos(|\lambda_{j} - \lambda_{k}|t) dt$$

$$\xrightarrow{\varepsilon \to 0} \begin{cases} \langle \phi_{n}, B \phi_{m} \rangle, & |\lambda_{n} - \lambda_{m}| = |\lambda_{j} - \lambda_{k}| \\ 0, & \text{otherwise} \end{cases}$$

Averaging

We need to study, as $\varepsilon \to 0$,

$$\phi(T/\varepsilon, u_{\varepsilon}, \phi_j) = \exp\left(\frac{1}{\langle \phi_k, B\phi_j \rangle} \frac{\pi}{2} \frac{\varepsilon}{T} \int_0^{T/\varepsilon} \cos(|\lambda_j - \lambda_k| t) e^{-tA} B e^{tA} dt\right) \phi_j.$$

We note that

$$\frac{\varepsilon}{T} \int_{0}^{T/\varepsilon} \langle \phi_{m}, \cos(|\lambda_{j} - \lambda_{k}|t) e^{-tA} B e^{tA} \phi_{n} \rangle dt$$

$$= \langle \phi_{m}, B \phi_{n} \rangle \frac{\varepsilon}{T} \int_{0}^{T/\varepsilon} e^{i(\lambda_{n} - \lambda_{m})t} \cos(|\lambda_{j} - \lambda_{k}|t) dt$$

$$\xrightarrow{\varepsilon \to 0} \begin{cases} \langle \phi_{n}, B \phi_{m} \rangle, & |\lambda_{n} - \lambda_{m}| = |\lambda_{j} - \lambda_{k}| \\ 0, & \text{otherwise} \end{cases}$$

By hypothesis, $|\lambda_n - \lambda_m| = |\lambda_j - \lambda_k|$ only if (m, n) = (j, k) or (k, j). So, $\varepsilon \to 0$,

$$\exp\left(\frac{1}{\langle \phi_k, B\phi_j \rangle} \frac{\pi}{2} \frac{\varepsilon}{T} \int_0^{T/\varepsilon} \cos(|\lambda_j - \lambda_k| t) e^{-tA} B e^{tA} dt\right) \phi_j \to \exp\left(\frac{\pi}{2} E_{j,k}\right) \phi_j = -\phi_k.$$

19 of 19

Thanks for your attention!