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Quantum rotors and BEC on Td

On Td “ Rd{Zd ,

iBtψpt, xq “

´

´∆`V pxq`

d
ÿ

j“1

pu2j´1ptq sin`u2jptq cosqxbj , xy

¯

ψpt, xq`κ|ψ|
2pψ,

where p P N, κ P R, V P L8pTd ,Rq, and

b1 “ p1, 0, . . . , 0q, . . . , bd´1 “ p0, . . . , 1, 0q, bd “ p1, . . . , 1q.

It is locally-in-time well-posed1. We shall study small-time controllability,
which is thus a well-defined notion if the time is small enough such that
the equation is locally well-posed.

In d “ 1, it is just a rewriting of

iBtψpt, xq “

´

´ ∆ ` V pxq ` sptq cospx ` φptqq

¯

ψpt, xq ` κ|ψ|
2pψ,

with u1 “ s cospφq, u2 “ ´s sinpφq.

1See, e.g., Section 3.3 in the book of T. Tao, Nonlinear dispersive
equations: local and global analysis 3 of 19
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Notion of small-time approximate controllability

Introduce the L2-unitary sphere

S :“ tψ P L2pM,Cq ; }ψ}L2pMq “ 1u.

Denote by ψpt; u, ψ0q the solution: ψ0 P S ñ ψpt; u, ψ0q P S, for all
t P R such that the equation is well-defined, and for all u P PWC .

Definition 1 (STAC)

The equation is small-time approximately controllable (STAC) if, for
every ψ0, ψ1 P S and ε ą 0, there exist a time T P r0, εs, a global phase
θ P r0, 2πq and a PWC control u : r0,T s Ñ Rm such that

}ψpT ; u, ψ0q ´ e iθψ1}L2 ă ε.

4 of 19



A recent controllability result
We shall prove the following result for simplicity in the linear case κ “ 0,
but it holds also in the nonlinear case2.

Theorem3

The Schrödinger equation on Td is small-time approximately controllable.

‚ The same methods apply also to equations with purely continuous
spectrum, e.g.

iBtψpx , tq “ p´∆ ` uptqe´x2
{2 ` vptqxqψpx , tq, x P R.

‚ An open problem is to find a scalar-input Schrödinger equation on
L2pMq which is STAC4.

2Duca, Nersesyan: Bilinear control and growth of Sobolev norms for the
nonlinear Schrödinger equation, J. Eur. Math. Soc. (2024).

3Beauchard, Pozzoli; Small-time approximate controllability of bilinear
Schrödinger equations and diffeomorphisms (2025). arXiv:2410.02383v2

4Boussaid, Caponigro, Chambrion. Small time reachable set of bilinear
quantum systems. 51st Conference on Decision and Control (CDC), 2012 5 of 19
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Some notions I

Definition 2 (STAR operators)

A unitary operator L on L2pM,Cq is STAR if, for every ψ0 P S and ϵ ą 0,
there exist T P r0, ϵs, θ P r0, 2πq and u P PWC p0,T q such that
}ψpT ; u, ψ0q ´ e iθLψ0}L2 ă ϵ.

Lemma 3
The composition and the strong limit of STAR operators are STAR
operators.

Definition 4 (Unitary action of Diff0
pMq on L2pM ,Cq)

For P P Diff0
pMq, the unitary operator on L2pM,Cq associated with P is

defined by
LPψ “ |JP |1{2pψ ˝ Pq,

where |JP | “ detpDPq is the determinant of the Jacobian matrix of P.
Then }LPψ}L2 “ }ψ}L2 .
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Some notions II
Definition 5 (Flows ϕs

f )
For f P VecpMq, ϕsf denotes the flow associated with f at time s: for
every x0 P M, xpsq “ ϕsf px0q is the solution of the ODE

9xpsq “ f pxpsqq, xp0q “ x0.

Definition 6 (STC notions)

‚ STC of phases: for every φ P L2pM,Rq, the operator e iφ is STAR,

‚ STC of the group Diff0
cpMq: for every P P Diff0

cpMq, the operator
LP is STAR.

‚ STC of flows: for every f P VeccpMq, the operator Lϕ1
f

is STAR.

For f P VecpMq (resp. VeccpMq) then ϕ1
f P Diff0

pMq (resp. Diff0
cpMq).

Hence the following implication trivially holds

STC of the group Diff0
cpMq ñ STC of flows.
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A Theorem of Moser5

Transitivity of the group action of DiffpMq on positive probability
densities.

Moser’s Theorem
Let M be compact. Given ρ0, ρ1 P C8pM, p0,8qq, there exists
P P Diff0

pMq s.t.
|JPpxq|

1{2ρ0pPpxqq “ ρ1pxq

iff
ż

M

ρ2
0dx “

ż

M

ρ2
1dx .

E.g. on T: let }ρ0}L2 “ }ρ1}L2 “ C , and let ρ ” p2πq
´1{2C 1{2.If

P1,P2 P DiffpTq are such that

LPjρ “ ρj , j “ 0, 1

then P “ P2P
´1
1 is such that LPρ0 “ ρ1.The Pj may be taken to be

Pjpxq “ 2πC´1
ż x

0
ρ2
j pyqdy , j “ 0, 1.

5J. MOSER, On the volume elements on a manifold, Trans. Am. Math.
Soc., 120 (1965), pp. 286–294. 8 of 19
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Reduction to the control of phases and diffeos

The first step consists in proving a certain transitivity property.

Theorem

STC of phases and the group Diff0
cpMq ñ STAC.

This is a consequence of Moser’s Theorem, applied to the radial part of
the wavefunction’s polar decomposition.

By density, and since the solution operator is an isometry, WLOG
ψj “ ρje

iϕj , ϕj P L2
pM,Rq, ρj P C8

pM, p0,8qq.

Moser’s Theorem implies the existence of P P Diff0
cpMq such that

ρ1 “ LPρ0.

Then e iϕ1LPe
´iϕ0ψ0 “ e iϕ1LPρ0 “ e iϕ1ρ1 “ ψ1. By Lemma 3, the

operator e iϕ1LPe
´iϕ0 is STAR.
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A Theorem of Thurston6

Definition of simple group
A subgroup H of a group G is said to be normal if, for any h P H and
g P G , ghg´1 P H. A group G is said to be simple if its only normal
subgroups are G and tidu.

Thurston’s Theorem
Diff0

cpMq is a simple group.

This gives a certain surjectivity property.

Consequence: decomposition of diffeo as product of flows
Given P P Diff0

cpMq there exist n P N and f1, . . . , fn P VeccpMq such that

P “ ϕ1
fn ˝ ¨ ¨ ¨ ˝ ϕ1

f1 .

6W. P. THURSTON, Foliations and groups of diffeomorphisms, Bulletin of
the American Mathematical Society, 80 (1974), pp. 304–307. 10 of 19
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Proof of the consequence

The subgroup

F pMq :“ tϕ1
fn ˝ ¨ ¨ ¨ ˝ ϕ1

f1 ; n P N˚, f1, . . . , fn P VeccpMqu

is a normal subgroup of Diff0
cpMq.

Indeed, if X “ ϕ1
fn

˝ ¨ ¨ ¨ ˝ ϕ1
f1

P F pMq

and P P Diff0
cpMq then PXP´1 “ ϕ1

gn ˝ ¨ ¨ ¨ ˝ ϕ1
g1

where gj P VeccpMq is
the pushforward of fj by P

gjpxq :“ pP ‹ fjqpxq “ DPpP´1pxqq fjpP
´1pxqq,

thus PXP´1 P F pMq.By Thurston’s Theorem, Diff0
cpMq “ F pMq.
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Reduction to the control of phases and flows

The second step consists in proving

Theorem
STC of flows ñ STC of the group Diff0

cpMq.

This is a simple application of the consequence of Thurston’s
Theorem.

We thus get the following criterium.

Corollary

STC of phases and flows ñ STAC.

We are left to show the STAC of phases and flows for the Schrödinger
equation on Td .
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STC of phases I

Theorem7

The STC of phases holds for the Schrödinger equation on Td .

The main ingredients are:

‚

e´iτ´1{2W pxqe iτp∆´V pxqqe iτ
´1{2W pxqψ0

τÑ0
ÝÝÝÑ e´i|∇W |2ψ0.

Which follows from

e´iτ´1{2W pxqe iτp∆´V pxqqe iτ
´1{2W pxqψ0 “ exp

´

iτp∆ ´ V q ` τ1{2Tf ´ i |∇W |
2
¯

where f “ ∇W , Tf “ xf ,∇¨y ` 1
2divpf q. It is an explicit sequence of

delta kicks.

‚ And the density of a certain infinite-dimensional Lie algebra.

7Duca, Nersesyan: Bilinear control and growth of Sobolev norms for the
nonlinear Schrödinger equation, J. Eur. Math. Soc. (2024). 13 of 19
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STC of phases II

We next introduce H0 “ spantV1, . . . ,V2d`1u and Hj the largest vector
space whose elements can be written as

ϕ0 ´

N
ÿ

i“1

|∇ϕi |2, ϕi P Hj´1, N P N.

Then, we have that Y8
j“0Hj is dense in L2pTd ,Rq. The idea is that

2| cos1pxq|2 “ 2 sin2
pxq “ 1 ´ cosp2xq – ´ cosp2xq,

and
2| sin1

pxq|2 “ 2 cos2pxq “ 1 ` cosp2xq – ` cosp2xq.

14 of 19
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space whose elements can be written as

ϕ0 ´

N
ÿ

i“1

|∇ϕi |2, ϕi P Hj´1, N P N.

Then, we have that Y8
j“0Hj is dense in L2pTd ,Rq. The idea is that

2| cos1pxq|2 “ 2 sin2
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Strategy to show STC of flows

We next show the following.

Theorem
The STC of flows holds for the Schrödinger equations on Td .

In view of the previous slides, the latter Theorem implies the main
theorem, i.e. the STAC of the Schrödinger equations on Td .

Our strategy to prove it is:

STC of phases ñ STC of flows of gradient vector fields ñ STC of flows.
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STC of phases ñ STC of flows of gradient vector fields I

Introduce the space of gradient vector fields on Td

G “ t∇φ;φ P C8pTd ,Rqu Ă VecpTdq.

Theorem
Let f “ ∇φ P G and P :“ ϕ1

f . Then LP is STAR for the Schrödinger
equations on Td and Rd .

The first remark is that, being LP unitary, it must be the exponential of
some skew-adjoint operator (Stone Theorem). We have

pLϕt
f
ψqpxq “ ψpϕtf pxqqe

1
2

şt
0 divf pϕs

f pxqqds “ petTf ψqpxq

where Tf “ xf ,∇¨y ` 1
2divpf q is a skew-adjoint operator. In the first

equality we used Liouville formula, and in the second equality the method
of characteristics.
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STC of phases ñ STC of flows of gradient vector fields II

The proof then consists in showing the following strong convergences:
¨

˚

˚

˚

˚

˝

e
1
n

i|∇φ|2
4τ e i

φ
2τ e i

τ
n p∆´V qe´i φ

2τ
loooooooooomoooooooooon

exp 1
n

ˆ

iτp∆´V q`Tf ´
i|∇φ|2

4τ

˙

˛

‹

‹

‹

‹

‚

n

ÝÑ
nÑ8

e iτp∆´V q`Tf ÝÑ
τÑ0

eTf “ LP

where Tf “ xf ,∇¨y ` 1
2divpf q. In the first convergence we used

Trotter-Kato product formula limnÑ8pe
A
n e

B
n qn “ eA`B .
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STC of flows of gradient vector fields ñ STC of flows I

Theorem
L :“ tf P VecpMq;@t P R,Lϕt

f
is L2-STARu is a Lie subalgebra of

VecpMq. Hence, by the previous Theorem, LiepGq Ă L.

We show that if f , g P L and P :“ ϕ1
rf ,gs

then LP is the strong limit of
STAR operators.

We use the following convergences
ˆ

e
´1
tn

Tf e´tTg e
1
tn
Tf etTg

˙n

ÝÑ
nÑ8

exp

ˆ

´1
t

Tf ` e´tTg 1
t
Tf e

tTg

˙

ÝÑ
tÑ0

eTrf ,gs “ LP .

Do you remember the finite-dimensional analogue?
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STC of flows of gradient vector fields ñ STC of flows II

The last step of our strategy is proving that LiepGq is dense in VecpTdq.

Theorem
For every f P VecpTdq, there exists pfnqnPN Ă LiepGq such that Lϕ1

f
is the

strong limit of pLϕ1
fn

qnPN.

The basic idea is that the Lie bracket of gradient vector fields is not a
gradient vector field. E.g.,

r∇ cospxjq,∇ sinpxjqs “ rcospxjqBxj , sinpxjqBxj s “ Bxj ,

and

´
1
2

r∇ sinpxjq sinpxkq,∇ cospxkqs`
1
2

r∇ sinpxjq cospxkq,∇ sinpxkqs “ sinpxjqBxk .
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Thanks for your attention!
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