Controllability of Schrödinger equations and application to quantum rotors

Eugenio Pozzoli (CNRS, IRMAR, Université de Rennes, France)

24-26 February 2025, Dijon - Winter school on BEC

Controllability of finite-dimensional Schrödinger equations
Spectral conditions and resonant control
Controllability of ∞-dimensional Schrödinger equations

Controllability of ∞ -dimensional Schrödinger equations

2 Two theorems of Moser and Thurston

3 STC of phases

4 STC of flows

1 Small-time controllability of quantum rotors

2 Two theorems of Moser and Thurston

3 STC of phases

Quantum rotors and BEC on \mathbb{T}^d

On $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$, $i\partial_t \psi(t, x) = \left(-\Delta + V(x) + \sum_{j=1}^d (u_{2j-1}(t)\sin + u_{2j}(t)\cos)\langle b_j, x \rangle \right) \psi(t, x) + \kappa |\psi|^{2p} \psi$, where $p \in \mathbb{N}, \kappa \in \mathbb{R}, V \in L^{\infty}(\mathbb{T}^d, \mathbb{R})$, and $b_1 = (1, 0, \dots, 0), \dots, b_{d-1} = (0, \dots, 1, 0), b_d = (1, \dots, 1).$

It is locally-in-time well-posed¹. We shall study small-time controllability, which is thus a well-defined notion if the time is small enough such that the equation is locally well-posed.

¹See, e.g., Section 3.3 in the book of T. Tao, Nonlinear dispersive equations: local and global analysis

Quantum rotors and BEC on \mathbb{T}^d

On $\mathbb{T}^d = \mathbb{R}^d / \mathbb{Z}^d$,

$$i\partial_t \psi(t,x) = \left(-\Delta + V(x) + \sum_{j=1}^d (u_{2j-1}(t)\sin + u_{2j}(t)\cos)\langle b_j, x\rangle\right) \psi(t,x) + \kappa |\psi|^{2p} \psi,$$

where $p \in \mathbb{N}, \kappa \in \mathbb{R}$, $V \in L^{\infty}(\mathbb{T}^d, \mathbb{R})$, and

$$b_1 = (1, 0, \dots, 0), \quad \dots, \quad b_{d-1} = (0, \dots, 1, 0), \quad b_d = (1, \dots, 1).$$

It is locally-in-time well-posed¹. We shall study small-time controllability, which is thus a well-defined notion if the time is small enough such that the equation is locally well-posed. In d = 1, it is just a rewriting of

 $i\partial_t\psi(t,x) = \Big(-\Delta + V(x) + \mathbf{s}(t)\cos(x+\varphi(t))\Big)\psi(t,x) + \kappa|\psi|^{2p}\psi,$

with $u_1 = s \cos(\varphi), u_2 = -s \sin(\varphi)$.

¹See, e.g., Section 3.3 in the book of T. Tao, Nonlinear dispersive equations: local and global analysis

Introduce the L^2 -unitary sphere

$$S := \{ \psi \in L^2(M, \mathbb{C}) ; \| \psi \|_{L^2(M)} = 1 \}.$$

Denote by $\psi(t; u, \psi_0)$ the solution: $\psi_0 \in S \Rightarrow \psi(t; u, \psi_0) \in S$, for all $t \in \mathbb{R}$ such that the equation is well-defined, and for all $u \in PWC$.

Definition 1 (STAC)

The equation is **small-time approximately controllable** (STAC) if, for every $\psi_0, \psi_1 \in S$ and $\varepsilon > 0$, there exist a time $T \in [0, \varepsilon]$, a global phase $\theta \in [0, 2\pi)$ and a PWC control $u : [0, T] \rightarrow \mathbb{R}^m$ such that

$$\|\psi(T; u, \psi_0) - e^{i\theta}\psi_1\|_{L^2} < \varepsilon.$$

A recent controllability result

We shall prove the following result for simplicity in the linear case $\kappa = 0$, but it holds also in the nonlinear case².

Theorem³

The Schrödinger equation on \mathbb{T}^d is small-time approximately controllable.

³Beauchard, Pozzoli; Small-time approximate controllability of bilinear Schrödinger equations and diffeomorphisms (2025). arXiv:2410.02383v2

⁴Boussaid, Caponigro, Chambrion. Small time reachable set of bilinear quantum systems. 51st Conference on Decision and Control (CDC), 2012

²Duca, Nersesyan: Bilinear control and growth of Sobolev norms for the nonlinear Schrödinger equation, J. Eur. Math. Soc. (2024).

A recent controllability result

We shall prove the following result for simplicity in the linear case $\kappa = 0$, but it holds also in the nonlinear case².

Theorem³

The Schrödinger equation on \mathbb{T}^d is small-time approximately controllable.

• The same methods apply also to equations with purely continuous spectrum, e.g.

$$i\partial_t\psi(x,t) = (-\Delta + u(t)e^{-x^2/2} + v(t)x)\psi(x,t), \quad x \in \mathbb{R}.$$

²Duca, Nersesyan: Bilinear control and growth of Sobolev norms for the nonlinear Schrödinger equation, J. Eur. Math. Soc. (2024).

³Beauchard, Pozzoli; Small-time approximate controllability of bilinear Schrödinger equations and diffeomorphisms (2025). arXiv:2410.02383v2

⁴Boussaid, Caponigro, Chambrion. Small time reachable set of bilinear quantum systems. 51st Conference on Decision and Control (CDC), 2012

A recent controllability result

We shall prove the following result for simplicity in the linear case $\kappa = 0$, but it holds also in the nonlinear case².

Theorem³

The Schrödinger equation on \mathbb{T}^d is small-time approximately controllable.

• The same methods apply also to equations with purely continuous spectrum, e.g.

$$i\partial_t\psi(x,t) = (-\Delta + u(t)e^{-x^2/2} + v(t)x)\psi(x,t), \quad x \in \mathbb{R}.$$

An open problem is to find a *scalar-input* Schrödinger equation on L²(M) which is STAC⁴.

²Duca, Nersesyan: Bilinear control and growth of Sobolev norms for the nonlinear Schrödinger equation, J. Eur. Math. Soc. (2024).

³Beauchard, Pozzoli; Small-time approximate controllability of bilinear Schrödinger equations and diffeomorphisms (2025). arXiv:2410.02383v2

⁴Boussaid, Caponigro, Chambrion. Small time reachable set of bilinear quantum systems. 51st Conference on Decision and Control (CDC), 2012

2 Two theorems of Moser and Thurston

3 STC of phases

Some notions I

Definition 2 (STAR operators)

A unitary operator L on $L^2(M, \mathbb{C})$ is STAR if, for every $\psi_0 \in S$ and $\epsilon > 0$, there exist $T \in [0, \epsilon]$, $\theta \in [0, 2\pi)$ and $u \in PWC(0, T)$ such that $\|\psi(T; u, \psi_0) - e^{i\theta}L\psi_0\|_{L^2} < \epsilon$.

Lemma 3

The composition and the strong limit of STAR operators are STAR operators.

Some notions I

Definition 2 (STAR operators)

A unitary operator L on $L^2(M, \mathbb{C})$ is STAR if, for every $\psi_0 \in S$ and $\epsilon > 0$, there exist $T \in [0, \epsilon]$, $\theta \in [0, 2\pi)$ and $u \in PWC(0, T)$ such that $\|\psi(T; u, \psi_0) - e^{i\theta}L\psi_0\|_{L^2} < \epsilon$.

Lemma 3

The composition and the strong limit of STAR operators are STAR operators.

Definition 4 (Unitary action of $\text{Diff}^0(M)$ on $L^2(M, \mathbb{C})$)

For $P \in \text{Diff}^0(M)$, the unitary operator on $L^2(M,\mathbb{C})$ associated with P is defined by

$$\mathcal{L}_P \psi = |J_P|^{1/2} (\psi \circ P),$$

where $|J_P| = \det(DP)$ is the determinant of the Jacobian matrix of P. Then $\|\mathcal{L}_P\psi\|_{L^2} = \|\psi\|_{L^2}$.

Some notions II

Definition 5 (Flows ϕ_f^s)

For $f \in \text{Vec}(M)$, ϕ_f^s denotes the flow associated with f at time s: for every $x_0 \in M$, $x(s) = \phi_f^s(x_0)$ is the solution of the ODE

 $\dot{x}(s) = f(x(s)), \quad x(0) = x_0.$

Some notions II

Definition 5 (Flows ϕ_f^s)

For $f \in \text{Vec}(M)$, ϕ_f^s denotes the flow associated with f at time s: for every $x_0 \in M$, $x(s) = \phi_f^s(x_0)$ is the solution of the ODE

$$\dot{x}(s) = f(x(s)), \quad x(0) = x_0.$$

Definition 6 (STC notions)

- STC of phases: for every $\varphi \in L^2(M, \mathbb{R})$, the operator $e^{i\varphi}$ is STAR,
- **STC of the group** $\operatorname{Diff}_{c}^{0}(M)$: for every $P \in \operatorname{Diff}_{c}^{0}(M)$, the operator \mathcal{L}_{P} is STAR.
- STC of flows: for every $f \in \operatorname{Vec}_{c}(M)$, the operator $\mathcal{L}_{\phi_{\epsilon}^{1}}$ is STAR.

Some notions II

Definition 5 (Flows ϕ_f^s)

For $f \in \text{Vec}(M)$, ϕ_f^s denotes the flow associated with f at time s: for every $x_0 \in M$, $x(s) = \phi_f^s(x_0)$ is the solution of the ODE

$$\dot{x}(s) = f(x(s)), \quad x(0) = x_0.$$

Definition 6 (STC notions)

- STC of phases: for every $\varphi \in L^2(M, \mathbb{R})$, the operator $e^{i\varphi}$ is STAR,
- **STC of the group** $\operatorname{Diff}_{c}^{0}(M)$: for every $P \in \operatorname{Diff}_{c}^{0}(M)$, the operator \mathcal{L}_{P} is STAR.
- STC of flows: for every $f \in \operatorname{Vec}_{c}(M)$, the operator $\mathcal{L}_{\phi_{\epsilon}^{1}}$ is STAR.

For $f \in \operatorname{Vec}(M)$ (resp. $\operatorname{Vec}_{c}(M)$) then $\phi_{f}^{1} \in \operatorname{Diff}^{0}(M)$ (resp. $\operatorname{Diff}_{c}^{0}(M)$). Hence the following implication trivially holds

STC of the group $\operatorname{Diff}_{c}^{0}(M) \implies$ STC of flows.

Transitivity of the group action of Diff(M) on positive probability densities.

Moser's Theorem

Let *M* be compact. Given $\rho_0, \rho_1 \in C^{\infty}(M, (0, \infty))$, there exists $P \in \text{Diff}^0(M)$ s.t.

$$|J_P(x)|^{1/2}\rho_0(P(x)) = \rho_1(x)$$

iff

$$\int_M \rho_0^2 dx = \int_M \rho_1^2 dx.$$

⁵J. MOSER, On the volume elements on a manifold, Trans. Am. Math. Soc., 120 (1965), pp. 286–294.

Transitivity of the group action of Diff(M) on positive probability densities.

Moser's Theorem

Let *M* be compact. Given $\rho_0, \rho_1 \in C^{\infty}(M, (0, \infty))$, there exists $P \in \text{Diff}^0(M)$ s.t.

$$|J_P(x)|^{1/2}\rho_0(P(x)) = \rho_1(x)$$

iff

$$\int_M \rho_0^2 dx = \int_M \rho_1^2 dx.$$

E.g. on \mathbb{T} : let $\|\rho_0\|_{L^2} = \|\rho_1\|_{L^2} = C$, and let $\rho \equiv (2\pi)^{-1/2} C^{1/2}$.

⁵J. MOSER, On the volume elements on a manifold, Trans. Am. Math. Soc., 120 (1965), pp. 286–294.

Transitivity of the group action of Diff(M) on positive probability densities.

Moser's Theorem

Let *M* be compact. Given $\rho_0, \rho_1 \in C^{\infty}(M, (0, \infty))$, there exists $P \in \text{Diff}^0(M)$ s.t.

$$|J_P(x)|^{1/2}\rho_0(P(x)) = \rho_1(x)$$

iff

$$\int_M \rho_0^2 dx = \int_M \rho_1^2 dx.$$

E.g. on \mathbb{T} : let $\|\rho_0\|_{L^2} = \|\rho_1\|_{L^2} = C$, and let $\rho \equiv (2\pi)^{-1/2} C^{1/2}$. If $P_1, P_2 \in \text{Diff}(\mathbb{T})$ are such that

$$\mathcal{L}_{P_j}\rho=\rho_j, \quad j=0,1$$

then $P = P_2 P_1^{-1}$ is such that $\mathcal{L}_P \rho_0 = \rho_1$.

⁵J. MOSER, On the volume elements on a manifold, Trans. Am. Math. Soc., 120 (1965), pp. 286–294.

Transitivity of the group action of Diff(M) on positive probability densities.

Moser's Theorem

Let *M* be compact. Given $\rho_0, \rho_1 \in C^{\infty}(M, (0, \infty))$, there exists $P \in \text{Diff}^0(M)$ s.t.

$$|J_P(x)|^{1/2}\rho_0(P(x)) = \rho_1(x)$$

iff

$$\int_M \rho_0^2 dx = \int_M \rho_1^2 dx.$$

E.g. on \mathbb{T} : let $\|\rho_0\|_{L^2} = \|\rho_1\|_{L^2} = C$, and let $\rho \equiv (2\pi)^{-1/2} C^{1/2}$. If $P_1, P_2 \in \text{Diff}(\mathbb{T})$ are such that

$$\mathcal{L}_{P_j}\rho=\rho_j, \quad j=0,1$$

then $P = P_2 P_1^{-1}$ is such that $\mathcal{L}_P \rho_0 = \rho_1$. The P_j may be taken to be

$$P_j(x) = 2\pi C^{-1} \int_0^x \rho_j^2(y) dy, \quad j = 0, 1.$$

⁵J. MOSER, On the volume elements on a manifold, Trans. Am. Math. Soc., 120 (1965), pp. 286–294.

The first step consists in proving a certain *transitivity* property.

Theorem

STC of phases and the group $\operatorname{Diff}_{c}^{0}(M) \Rightarrow STAC$.

This is a consequence of Moser's Theorem, applied to the radial part of the wavefunction's *polar decomposition*.

The first step consists in proving a certain *transitivity* property.

Theorem

STC of phases and the group $\operatorname{Diff}_{c}^{0}(M) \Rightarrow STAC$.

This is a consequence of Moser's Theorem, applied to the radial part of the wavefunction's *polar decomposition*.

By density, and since the solution operator is an isometry, WLOG

 $\psi_j = \rho_j e^{i\phi_j}, \quad \phi_j \in L^2(M, \mathbb{R}), \quad \rho_j \in C^\infty(M, (0, \infty)).$

The first step consists in proving a certain *transitivity* property.

Theorem

STC of phases and the group $\operatorname{Diff}_{c}^{0}(M) \Rightarrow STAC$.

This is a consequence of Moser's Theorem, applied to the radial part of the wavefunction's *polar decomposition*.

By density, and since the solution operator is an isometry, WLOG

$$\psi_j = \rho_j e^{i\phi_j}, \quad \phi_j \in L^2(M, \mathbb{R}), \quad \rho_j \in C^\infty(M, (0, \infty)).$$

Moser's Theorem implies the existence of $P \in \text{Diff}_c^0(M)$ such that

$$\rho_1 = \mathcal{L}_P \rho_0.$$

The first step consists in proving a certain *transitivity* property.

Theorem

STC of phases and the group $\operatorname{Diff}_{c}^{0}(M) \Rightarrow STAC.$

This is a consequence of Moser's Theorem, applied to the radial part of the wavefunction's *polar decomposition*.

By density, and since the solution operator is an isometry, WLOG

$$\psi_j = \rho_j e^{i\phi_j}, \quad \phi_j \in L^2(M, \mathbb{R}), \quad \rho_j \in C^\infty(M, (0, \infty)).$$

Moser's Theorem implies the existence of $P \in \text{Diff}_c^0(M)$ such that

$$\rho_1 = \mathcal{L}_P \rho_0.$$

Then $e^{i\phi_1}\mathcal{L}_P e^{-i\phi_0}\psi_0 = e^{i\phi_1}\mathcal{L}_P \rho_0 = e^{i\phi_1}\rho_1 = \psi_1$. By Lemma 3, the operator $e^{i\phi_1}\mathcal{L}_P e^{-i\phi_0}$ is STAR.

A Theorem of Thurston⁶

Definition of simple group

A subgroup H of a group G is said to be *normal* if, for any $h \in H$ and $g \in G$, $ghg^{-1} \in H$. A group G is said to be *simple* if its only normal subgroups are G and $\{id\}$.

⁶W. P. THURSTON, Foliations and groups of diffeomorphisms, Bulletin of the American Mathematical Society, 80 (1974), pp. 304–307. 10 of 19

A Theorem of Thurston⁶

Definition of simple group

A subgroup H of a group G is said to be *normal* if, for any $h \in H$ and $g \in G$, $ghg^{-1} \in H$. A group G is said to be *simple* if its only normal subgroups are G and $\{id\}$.

Thurston's Theorem

 $\operatorname{Diff}_{c}^{0}(M)$ is a simple group.

⁶W. P. THURSTON, Foliations and groups of diffeomorphisms, Bulletin of the American Mathematical Society, 80 (1974), pp. 304–307. 10 of 19

A Theorem of Thurston⁶

Definition of simple group

A subgroup H of a group G is said to be *normal* if, for any $h \in H$ and $g \in G$, $ghg^{-1} \in H$. A group G is said to be *simple* if its only normal subgroups are G and $\{id\}$.

Thurston's Theorem

 $\operatorname{Diff}_{c}^{0}(M)$ is a simple group.

This gives a certain *surjectivity* property.

Consequence: decomposition of diffeo as product of flows

Given $P \in \text{Diff}_c^0(M)$ there exist $n \in \mathbb{N}$ and $f_1, \ldots, f_n \in \text{Vec}_c(M)$ such that

$$P=\phi_{f_n}^1\circ\cdots\circ\phi_{f_1}^1.$$

⁶W. P. THURSTON, Foliations and groups of diffeomorphisms, Bulletin of the American Mathematical Society, 80 (1974), pp. 304–307. 10 of 19

The subgroup

$$F(M) := \{\phi_{f_n}^1 \circ \cdots \circ \phi_{f_1}^1; n \in \mathbb{N}^*, f_1, \dots, f_n \in \operatorname{Vec}_c(M)\}$$

is a normal subgroup of $\operatorname{Diff}_{c}^{0}(M)$.

The subgroup

$$F(M) := \{\phi_{f_n}^1 \circ \cdots \circ \phi_{f_1}^1; n \in \mathbb{N}^*, f_1, \dots, f_n \in \operatorname{Vec}_c(M)\}$$

is a normal subgroup of $\operatorname{Diff}_{c}^{0}(M)$.Indeed, if $X = \phi_{f_{n}}^{1} \circ \cdots \circ \phi_{f_{1}}^{1} \in F(M)$ and $P \in \operatorname{Diff}_{c}^{0}(M)$ then $PXP^{-1} = \phi_{g_{n}}^{1} \circ \cdots \circ \phi_{g_{1}}^{1}$ where $g_{j} \in \operatorname{Vec}_{c}(M)$ is the pushforward of f_{j} by P

$$g_j(x) := (P \star f_j)(x) = DP(P^{-1}(x)) f_j(P^{-1}(x)),$$

thus $PXP^{-1} \in F(M)$.

The subgroup

$$F(M) := \{\phi_{f_n}^1 \circ \cdots \circ \phi_{f_1}^1; n \in \mathbb{N}^*, f_1, \dots, f_n \in \operatorname{Vec}_c(M)\}$$

is a normal subgroup of $\operatorname{Diff}_{c}^{0}(M)$.Indeed, if $X = \phi_{f_{n}}^{1} \circ \cdots \circ \phi_{f_{1}}^{1} \in F(M)$ and $P \in \operatorname{Diff}_{c}^{0}(M)$ then $PXP^{-1} = \phi_{g_{n}}^{1} \circ \cdots \circ \phi_{g_{1}}^{1}$ where $g_{j} \in \operatorname{Vec}_{c}(M)$ is the pushforward of f_{j} by P

$$g_j(x) := (P \star f_j)(x) = DP(P^{-1}(x)) f_j(P^{-1}(x)),$$

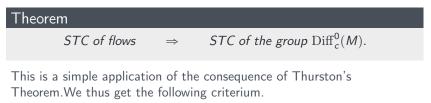
thus $PXP^{-1} \in F(M)$. By Thurston's Theorem, $\operatorname{Diff}_{c}^{0}(M) = F(M)$.

The second step consists in proving

Theorem		
STC of flows	\Rightarrow	STC of the group $\operatorname{Diff}_{c}^{0}(M)$.

This is a simple application of the consequence of Thurston's Theorem.

The second step consists in proving



CorollarySTC of phases and flows \Rightarrow STAC.

We are left to show the STAC of phases and flows for the Schrödinger equation on $\mathbb{T}^d.$

2 Two theorems of Moser and Thurston

STC of phases I

Theorem⁷

The STC of phases holds for the Schrödinger equation on \mathbb{T}^d .

The main ingredients are:

 $e^{-i\tau^{-1/2}W(x)}e^{i\tau(\Delta-V(x))}e^{i\tau^{-1/2}W(x)}\psi_0 \xrightarrow{\tau \to 0} e^{-i|\nabla W|^2}\psi_0.$

Which follows from

$$e^{-i\tau^{-1/2}W(x)}e^{i\tau(\Delta-V(x))}e^{i\tau^{-1/2}W(x)}\psi_{0} = \exp\left(i\tau(\Delta-V) + \tau^{1/2}\mathcal{T}_{f} - i|\nabla W|^{2}\right)$$

where $f = \nabla W$, $\mathcal{T}_f = \langle f, \nabla \cdot \rangle + \frac{1}{2} \operatorname{div}(f)$. It is an explicit sequence of delta kicks.

⁷Duca, Nersesyan: Bilinear control and growth of Sobolev norms for the nonlinear Schrödinger equation, J. Eur. Math. Soc. (2024). 13 of 19

STC of phases I

Theorem⁷

The STC of phases holds for the Schrödinger equation on \mathbb{T}^d .

The main ingredients are:

 $e^{-i\tau^{-1/2}W(x)}e^{i\tau(\Delta-V(x))}e^{i\tau^{-1/2}W(x)}\psi_0 \xrightarrow{\tau \to 0} e^{-i|\nabla W|^2}\psi_0.$ Which follows from

$$e^{-i\tau^{-1/2}W(x)}e^{i\tau(\Delta-V(x))}e^{i\tau^{-1/2}W(x)}\psi_{0} = \exp\left(i\tau(\Delta-V) + \tau^{1/2}\mathcal{T}_{f} - i|\nabla W|^{2}\right)$$

where $f = \nabla W$, $\mathcal{T}_f = \langle f, \nabla \cdot \rangle + \frac{1}{2} \operatorname{div}(f)$. It is an explicit sequence of delta kicks.

• And the density of a certain *infinite-dimensional Lie algebra*.

⁷Duca, Nersesyan: Bilinear control and growth of Sobolev norms for the nonlinear Schrödinger equation, J. Eur. Math. Soc. (2024). 13 of 19

We next introduce $\mathcal{H}_0 = \operatorname{span}\{V_1, \ldots, V_{2d+1}\}$ and \mathcal{H}_j the largest vector space whose elements can be written as

$$\phi_0 - \sum_{i=1}^N |\nabla \phi_i|^2, \quad \phi_i \in \mathcal{H}_{j-1}, \ N \in \mathbb{N}.$$

We next introduce $\mathcal{H}_0 = \operatorname{span}\{V_1, \ldots, V_{2d+1}\}$ and \mathcal{H}_j the largest vector space whose elements can be written as

$$\phi_0 - \sum_{i=1}^N |\nabla \phi_i|^2, \quad \phi_i \in \mathcal{H}_{j-1}, \ N \in \mathbb{N}.$$

Then, we have that $\cup_{j=0}^{\infty} \mathcal{H}_j$ is **dense** in $L^2(\mathbb{T}^d, \mathbb{R})$.

We next introduce $\mathcal{H}_0 = \operatorname{span}\{V_1, \ldots, V_{2d+1}\}$ and \mathcal{H}_j the largest vector space whose elements can be written as

$$\phi_0 - \sum_{i=1}^N |\nabla \phi_i|^2, \quad \phi_i \in \mathcal{H}_{j-1}, \ N \in \mathbb{N}.$$

Then, we have that $\bigcup_{j=0}^{\infty} \mathcal{H}_j$ is **dense** in $L^2(\mathbb{T}^d, \mathbb{R})$. The idea is that

$$2|\cos'(x)|^2 = 2\sin^2(x) = 1 - \cos(2x) \cong -\cos(2x),$$

and

$$2|\sin'(x)|^2 = 2\cos^2(x) = 1 + \cos(2x) \cong +\cos(2x).$$

2 Two theorems of Moser and Thurston

3 STC of phases

We next show the following.

Theorem

The STC of flows holds for the Schrödinger equations on \mathbb{T}^d .

In view of the previous slides, the latter Theorem implies the main theorem, i.e. the STAC of the Schrödinger equations on \mathbb{T}^d .

We next show the following.

Theorem

The STC of flows holds for the Schrödinger equations on \mathbb{T}^d .

In view of the previous slides, the latter Theorem implies the main theorem, i.e. the STAC of the Schrödinger equations on \mathbb{T}^d . Our strategy to prove it is:

STC of phases \Rightarrow STC of flows of gradient vector fields \Rightarrow STC of flows.

Introduce the space of gradient vector fields on \mathbb{T}^d

$$\mathfrak{G} = \{\nabla\varphi; \varphi \in \mathcal{C}^{\infty}(\mathbb{T}^d, \mathbb{R})\} \subset \operatorname{Vec}(\mathbb{T}^d).$$

Introduce the space of gradient vector fields on \mathbb{T}^d

$$\mathfrak{G} = \{\nabla\varphi; \varphi \in C^{\infty}(\mathbb{T}^d, \mathbb{R})\} \subset \operatorname{Vec}(\mathbb{T}^d).$$

Theorem

Let $f = \nabla \varphi \in \mathfrak{G}$ and $P := \phi_f^1$. Then \mathcal{L}_P is STAR for the Schrödinger equations on \mathbb{T}^d and \mathbb{R}^d .

Introduce the space of gradient vector fields on \mathbb{T}^d

$$\mathfrak{G} = \{\nabla\varphi; \varphi \in \mathcal{C}^{\infty}(\mathbb{T}^d, \mathbb{R})\} \subset \operatorname{Vec}(\mathbb{T}^d).$$

Theorem

Let $f = \nabla \varphi \in \mathfrak{G}$ and $P := \phi_f^1$. Then \mathcal{L}_P is STAR for the Schrödinger equations on \mathbb{T}^d and \mathbb{R}^d .

The first remark is that, being \mathcal{L}_P unitary, it must be the exponential of some skew-adjoint operator (*Stone Theorem*). We have

$$(\mathcal{L}_{\phi_f^t}\psi)(x) = \psi(\phi_f^t(x))e^{\frac{1}{2}\int_0^t \operatorname{div} f(\phi_f^s(x))ds} = (e^{t\mathcal{T}_f}\psi)(x)$$

where $\mathcal{T}_f = \langle f, \nabla \cdot \rangle + \frac{1}{2} \operatorname{div}(f)$ is a skew-adjoint operator. In the first equality we used Liouville formula, and in the second equality the method of characteristics.

The proof then consists in showing the following strong convergences:

$$\begin{pmatrix} e^{\frac{1}{n}\frac{i|\nabla\varphi|^{2}}{4\tau}} \underbrace{e^{i\frac{\varphi}{2\tau}}e^{i\frac{\tau}{n}(\Delta-V)}e^{-i\frac{\varphi}{2\tau}}}_{\exp\frac{1}{n}\left(i\tau(\Delta-V)+\mathcal{T}_{f}-\frac{i|\nabla\varphi|^{2}}{4\tau}\right)} \end{pmatrix}^{n} \xrightarrow[n\to\infty]{} e^{i\tau(\Delta-V)+\mathcal{T}_{f}} \xrightarrow[\tau\to0]{} e^{\mathcal{T}_{f}} = \mathcal{L}_{P}$$

where $\mathcal{T}_f = \langle f, \nabla \cdot \rangle + \frac{1}{2} \operatorname{div}(f)$. In the first convergence we used Trotter-Kato product formula $\lim_{n \to \infty} (e^{\frac{A}{n}} e^{\frac{B}{n}})^n = e^{A+B}$.

Theorem

 $\mathfrak{L} := \{ f \in \operatorname{Vec}(M); \forall t \in \mathbb{R}, \mathcal{L}_{\phi_f^t} \text{ is } L^2 \text{-} STAR \} \text{ is a Lie subalgebra of } \operatorname{Vec}(M). \text{ Hence, by the previous Theorem, } \operatorname{Lie}(\mathfrak{G}) \subset \mathfrak{L}.$

We show that if $f, g \in \mathfrak{L}$ and $P := \phi_{[f,g]}^1$ then \mathcal{L}_P is the strong limit of STAR operators.

Theorem

 $\mathfrak{L} := \{ f \in \operatorname{Vec}(M); \forall t \in \mathbb{R}, \mathcal{L}_{\phi_f^t} \text{ is } L^2 \text{-} STAR \} \text{ is a Lie subalgebra of } \operatorname{Vec}(M). \text{ Hence, by the previous Theorem, } \operatorname{Lie}(\mathfrak{G}) \subset \mathfrak{L}.$

We show that if $f, g \in \mathfrak{L}$ and $P := \phi^1_{[f,g]}$ then \mathcal{L}_P is the strong limit of STAR operators. We use the following convergences

$$\left(e^{\frac{-1}{tn}\mathcal{T}_f}e^{-t\mathcal{T}_g}e^{\frac{1}{tn}\mathcal{T}_f}e^{t\mathcal{T}_g}\right)^n \underset{n \to \infty}{\longrightarrow} \exp\left(\frac{-1}{t}\mathcal{T}_f + e^{-t\mathcal{T}_g}\frac{1}{t}\mathcal{T}_f e^{t\mathcal{T}_g}\right) \underset{t \to 0}{\longrightarrow} e^{\mathcal{T}_{[f,g]}} = \mathcal{L}_P.$$

Do you remember the finite-dimensional analogue?

The last step of our strategy is proving that $\text{Lie}(\mathfrak{G})$ is dense in $\text{Vec}(\mathbb{T}^d)$.

Theorem

For every $f \in \operatorname{Vec}(\mathbb{T}^d)$, there exists $(f_n)_{n \in \mathbb{N}} \subset \operatorname{Lie}(\mathfrak{G})$ such that $\mathcal{L}_{\phi_f^1}$ is the strong limit of $(\mathcal{L}_{\phi_{f_n}^1})_{n \in \mathbb{N}}$.

The last step of our strategy is proving that $\text{Lie}(\mathfrak{G})$ is dense in $\text{Vec}(\mathbb{T}^d)$.

Theorem

For every $f \in \operatorname{Vec}(\mathbb{T}^d)$, there exists $(f_n)_{n \in \mathbb{N}} \subset \operatorname{Lie}(\mathfrak{G})$ such that $\mathcal{L}_{\phi_f^1}$ is the strong limit of $(\mathcal{L}_{\phi_{f_n}^1})_{n \in \mathbb{N}}$.

The basic idea is that the Lie bracket of gradient vector fields is not a gradient vector field. E.g.,

$$[\nabla \cos(x_j), \nabla \sin(x_j)] = [\cos(x_j)\partial_{x_j}, \sin(x_j)\partial_{x_j}] = \partial_{x_j},$$

and

$$-\frac{1}{2}[\nabla \sin(x_j)\sin(x_k), \nabla \cos(x_k)] + \frac{1}{2}[\nabla \sin(x_j)\cos(x_k), \nabla \sin(x_k)] = \sin(x_j)\partial_{x_k}.$$

Thanks for your attention!