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Quantum rotors and BEC on T¢

On T9 = RY/2¢,
d

i0v)(t,x) = <*A+ V()4 D (uzj—a(8) sin +uz(2) COS)<bj,X>>¢(f~, X)+ k[P,
j=1

where pe N,k e R, V € L®(T?,R), and
bi=(1,0,...,0), ..., by_1=1(0,...,1,0), bg=(1,...,1).

It is locally-in-time well-posed. We shall study small-time controllability,
which is thus a well-defined notion if the time is small enough such that
the equation is locally well-posed.

1See, e.g., Section 3.3 in the book of T. Tao, Nonlinear dispersive
equations: local and global analysis 3 0of 19



Quantum rotors and BEC on T¢

On T¢ = RY/Z4,

0 (t, x) = <7A+ V()4 ) (uzia (1) sin -+ (1) cos)<bj,x>)w(t., X)+k[[PP,

where pe N,k e R, V € L®(T?,R), and

by = (1,0,...,0), ..., bg_1=(0,...,1,0), bg=(1,...,1).

It is locally-in-time well-posed. We shall study small-time controllability,
which is thus a well-defined notion if the time is small enough such that

the equation is locally well-posed.
In d =1, it is just a rewriting of

0 (t, x) = ( — A+ V(x) + s(t) cos(x + go(t)))z/)(t, x) + K| [P,

with v = scos(p), ur = —ssin(yp).

1See, e.g., Section 3.3 in the book of T. Tao, Nonlinear dispersive
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Notion of small-time approximate controllability

Introduce the L2-unitary sphere
S:={¢ e LX(M,C); [¢]i2(m) = 1}.

Denote by 1 (t; u,1)9) the solution: 1o € S = ¥(t; u, ) € S, for all
t € R such that the equation is well-defined, and for all v e PWC.

Definition 1 (STAC)

The equation is small-time approximately controllable (STAC) if, for
every 1o, %1 € S and € > 0, there exist a time T € [0, ], a global phase
0 € [0,27) and a PWC control u : [0, T] — R™ such that

(T u, o) — €412 < e.
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A recent controllability result

We shall prove the following result for simplicity in the linear case k = 0,

but it holds also in the nonlinear case?.

Theorem?3

The Schrédinger equation on T is small-time approximately controllable.

2Duca, Nersesyan: Bilinear control and growth of Sobolev norms for the
nonlinear Schrédinger equation, J. Eur. Math. Soc. (2024).

3Beauchard, Pozzoli; Small-time approximate controllability of bilinear
Schrédinger equations and diffeomorphisms (2025). arXiv:2410.02383v2

“Boussaid, Caponigro, Chambrion. Small time reachable set of bilinear
quantum systems. 51st Conference on Decision and Control (CDC), 2012 5 of 19
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We shall prove the following result for simplicity in the linear case k = 0,

but it holds also in the nonlinear case?.

Theorem?3

The Schrédinger equation on T is small-time approximately controllable.

e The same methods apply also to equations with purely continuous
spectrum, e.g.

i0)(x,t) = (=A + u(t)e ™2 + v()x)(x, t), xeR.

e An open problem is to find a scalar-input Schrédinger equation on
L2(M) which is STAC*.
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Two theorems of Moser and Thurston

5 of 19



Some notions |

Definition 2 (STAR operators)

A unitary operator L on L2(M,C) is STAR if, for every 1o € S and € > 0,
there exist T € [0,¢], 0 € [0,27) and u e PWC(0, T) such that
[ (T u,400) — € Lipo] 12 < e

Lemma 3

The composition and the strong limit of STAR operators are STAR
operators.
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Some notions |

Definition 2 (STAR operators)

A unitary operator L on L2(M,C) is STAR if, for every 1o € S and € > 0,
there exist T € [0,¢], 6 € [0,27) and u € PWC(0, T) such that

[(T; u,1bo) — ei6L1/JoHL2 < €.

Lemma 3

The composition and the strong limit of STAR operators are STAR
operators.

Definition 4 (Unitary action of Diff°(M) on L?(M, C))

For P € Diff°(M), the unitary operator on L2(M, C) associated with P is
defined by
Loy = [Jp|2(p0 P),

where |Jp| = det(DP) is the determinant of the Jacobian matrix of P.
Then [|Lpy) 12 = [[9] 2.
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Some notions ||

Definition 5 (Flows ¢2)

For f € Vec(M), ¢3 denotes the flow associated with f at time s: for
every xg € M, x(s) = ¢3(xo) is the solution of the ODE

x(s) = f(x(s)), x(0) = xo.
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Some notions ||

Definition 5 (Flows ¢2)
)

For f € Vec(M), ¢3 denotes the flow associated with f at time s: for
every xg € M, x(s) = ¢3(xo) is the solution of the ODE

x(s) = f(x(s)), x(0)= xo.
Definition 6 (STC notions)

e STC of phases: for every ¢ € L2(M,R), the operator e¢ is STAR,

e STC of the group Diffo(M): for every P € Diff2(M), the operator
Lp is STAR.

o STC of flows: for every f € Vecc(M), the operator Ly is STAR.
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Some notions ||

Definition 5 (Flows ¢2)

For f € Vec(M), ¢3 denotes the flow associated with f at time s: for
every xg € M, x(s) = ¢3(xo) is the solution of the ODE

x(s) = f(x(s)), x(0)= xo.
Definition 6 (STC notions)

e STC of phases: for every ¢ € L2(M,R), the operator e¢ is STAR,

e STC of the group Diffo(M): for every P € Diff2(M), the operator
Lp is STAR.

o STC of flows: for every f € Vecc(M), the operator Ly is STAR.
For f € Vec(M) (resp. Vec.(M)) then ¢} € Diff’(M) (resp. Diff2(M)).
Hence the following implication trivially holds

STC of the group Diff®(M) = STC of flows.
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A Theorem of Moser®

Transitivity of the group action of Diff(M) on positive probability
densities.

Moser's Theorem

Let M be compact. Given pg, p1 € C*(M, (0, 0)), there exists
P e Diff’(M) s.t.

[Jp(x)[*?po(P(x)) = p1(x)

f pgdx :f pfdx.
M M

iff

5J. MOSER, On the volume elements on a manifold, Trans. Am. Math.
Soc., 120 (1965), pp. 286—294. 8 of 19
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A Theorem of Moser®

Transitivity of the group action of Diff(M) on positive probability
densities.

Moser's Theorem

Let M be compact. Given pg, p1 € C*(M, (0, 0)), there exists
P e Diff’(M) s.t.
[ ()["2po(P(x)) = p1(x)

f pgdx :f pfdx.
M M

E.g. on T: let |poli2 = ||p1]2 = C, and let p = (27r)*1/2(:1/2_|f
Py, P> € Diff (T) are such that

iff

Lpp=pj, j=01
then P = Pszl is such that Lppg = p1.The P; may be taken to be
Pi(x) = 26C [ n)dy, j=0.1
0

5J. MOSER, On the volume elements on a manifold, Trans. Am. Math.
Soc., 120 (1965), pp. 286—294. 8 of 19




Reduction to the control of phases and diffeos

The first step consists in proving a certain transitivity property.

Theorem

STC of phases and the group Diff%(M) = STAC.

This is a consequence of Moser’s Theorem, applied to the radial part of
the wavefunction's polar decomposition.
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Reduction to the control of phases and diffeos

The first step consists in proving a certain transitivity property.

STC of phases and the group Diff%(M) = STAC.

This is a consequence of Moser’s Theorem, applied to the radial part of
the wavefunction's polar decomposition.
By density, and since the solution operator is an isometry, WLOG

Y= pie, ¢pe X(M,R), p;je C*(M,(0,)).
Moser's Theorem implies the existence of P € Diff’(M) such that
p1 = Lppo.

Then e'%1 Lpe™'%04)g = e'* Lppg = €/%*p1 = 11. By Lemma 3, the
operator e/ Lpe~i% is STAR.
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A Theorem of Thurston®

Definition of simple group

A subgroup H of a group G is said to be normal if, for any h e H and
ge G, ghg=t e H. A group G is said to be simple if its only normal

subgroups are G and {id}.

5W. P. THURSTON, Foliations and groups of diffeomorphisms, Bulletin of
the American Mathematical Society, 80 (1974), pp. 304-307. 10 of 19
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A Theorem of Thurston®

Definition of simple group

A subgroup H of a group G is said to be normal if, for any h e H and
ge G, ghg=t e H. A group G is said to be simple if its only normal
subgroups are G and {id}.

Thurston's Theorem

Diff%(M) is a simple group.
This gives a certain surjectivity property.

Consequence: decomposition of diffeo as product of flows
Given P € Diffg(l\/l) there exist n€ N and fi, ..., f, € Vec.(M) such that

P =¢p 000,

5W. P. THURSTON, Foliations and groups of diffeomorphisms, Bulletin of
the American Mathematical Society, 80 (1974), pp. 304-307. 10 of 19



Proof of the consequence

The subgroup
F(M) := {gb,lc o »-~o¢>}1; neN* fi,..., f, € Vec.(M)}

is a normal subgroup of Diff%(M).
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the pushforward of f; by P
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Proof of the consequence

The subgroup
F(M):={¢f o---o¢;ne N* fi,... f, € Veccs(M)}

is a normal subgroup of Diff®(M).Indeed, if X = ¢f o---0¢f € F(M)
and P e Diff’(M) then PXP~1 = ¢y, 0oL where gj € Vec.(M) is
the pushforward of f; by P

gi(x) := (Px f))(x) = DP(P™*(x)) fi(P~*(x)),

thus PXP~' € F(M).By Thurston's Theorem, Diff(M) = F(M).
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Reduction to the control of phases and flows

The second step consists in proving

Theorem
STC of flows = STC of the group Diff®(M).

This is a simple application of the consequence of Thurston's
Theorem.
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Reduction to the control of phases and flows

The second step consists in proving

Theorem
STC of flows = STC of the group Diff®(M).

This is a simple application of the consequence of Thurston's
Theorem.We thus get the following criterium.

Corollary

STC of phases and flows = STAC.

We are left to show the STAC of phases and flows for the Schrédinger
equation on T¢.
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STC of phases
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STC of phases |

Theorem”

The STC of phases holds for the Schrodinger equation on TY.

The main ingredients are:

[ ]
efiflr”ZW(x) eiT(Afv(x))ei‘r’l’/ZW(x)wO 70 efi\vwxzwo.

Which follows from
e—/fl/’zW(x)eiT(A—V(x))eif"’zW(X)wo = exp <i7‘(A —V)+ iy P i|VW|2)

where f = VW, Tr = (f,V-) + idiv(f). It is an explicit sequence of
delta kicks.

"Duca, Nersesyan: Bilinear control and growth of Sobolev norms for the

nonlinear Schrédinger equation, J. Eur. Math. Soc. (2024). 13 of 19



STC of phases |

Theorem”

The STC of phases holds for the Schrodinger equation on TY.

The main ingredients are:

[ ]
efiflr”ZW(x) eiT(Afv(x))ei‘r’l’/ZW(x)wO 70 efi\vwxzwo.

Which follows from
e—/fl/’zW(x)eiT(A—V(x))eif"’zW(X)wo = exp <i7‘(A —V)+ iy P i|VW|2)

where f = VW, Tr = (f,V-) + idiv(f). It is an explicit sequence of
delta kicks.

e And the density of a certain infinite-dimensional Lie algebra.

"Duca, Nersesyan: Bilinear control and growth of Sobolev norms for the
nonlinear Schrédinger equation, J. Eur. Math. Soc. (2024). 13 of 19



STC of phases |l

We next introduce Hg = span{ Vi, ..., Vogy1} and H; the largest vector
space whose elements can be written as

N
o — Z Vo2, ¢ieHj 1, NeN.
i1
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Then, we have that U* (H, is dense in L*>(T? R).
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STC of phases |l

We next introduce Hg = span{ Vi, ..., Vogy1} and H; the largest vector
space whose elements can be written as

N
%o — Z IVéil>, ¢ieHji1, NeN.
i=1

Then, we have that U2, H; is dense in L2(T9,R). The idea is that

2| cos’(x)[> = 2sin?(x) = 1 — cos(2x) =~ — cos(2x)

3

and
2|sin’(x)|? = 2cos?(x) = 1 + cos(2x) = + cos(2x).
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STC of flows
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Strategy to show STC of flows

We next show the following.

Theorem

The STC of flows holds for the Schrédinger equations on T¢.

In view of the previous slides, the latter Theorem implies the main
theorem, i.e. the STAC of the Schrédinger equations on T¢.
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Strategy to show STC of flows

We next show the following.

Theorem
The STC of flows holds for the Schrédinger equations on T¢.

In view of the previous slides, the latter Theorem implies the main
theorem, i.e. the STAC of the Schrédinger equations on T¢.
Our strategy to prove it is:

STC of phases = STC of flows of gradient vector fields = STC of flows.
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STC of phases = STC of flows of gradient vector fields |

Introduce the space of gradient vector fields on T¢

® = {Vy;pe C*(TY,R)} < Vec(T).
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STC of phases = STC of flows of gradient vector fields |

Introduce the space of gradient vector fields on T¢

® = {Vy;pe C*(TY,R)} < Vec(T).

Theorem
Let f =V e ® and P := ¢}. Then Lp is STAR for the Schrédinger
equations on T¢ and R,

The first remark is that, being L£p unitary, it must be the exponential of
some skew-adjoint operator (Stone Theorem). \We have

(L5 (x) = (F())ex e PTFENE = (eTrp) (x)

where T¢ = (f, V) + 1div(f) is a skew-adjoint operator. In the first
equality we used Liouville formula, and in the second equality the method
of characteristics.

16 of 19



STC of phases = STC of flows of gradient vector fields Il

The proof then consists in showing the following strong convergences:

n
1ilVel? e jra_v) e ir(A—V)+T; T
2r e’ e e f— e'f=/Lp

en ar e e 27 —
n— 00 T—0

exp L <iT(A7V)+Tf7%>

where Tr = (f, V) + 3div(f). In the first convergence we used
Trotter-Kato product formula lim,_.(e7e7)™ = eAtB.
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STC of flows of gradient vector fields = STC of flows |

Theorem

£:={f e Vec(M);Vt e R, Ly is L2-STAR)} is a Lie subalgebra of
Vec(M). Hence, by the previous Theorem, Lie(®) c £.

We show that if f,g € £ and P := ¢Ef-g] then Lp is the strong limit of
STAR operators.
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STC of flows of gradient vector fields = STC of flows |

Theorem

£:={f e Vec(M);Vt e R, Ly is L2-STAR)} is a Lie subalgebra of
Vec(M). Hence, by the previous Theorem, Lie(®) c £.

We show that if f,g € £ and P := (f)%f-g] then Lp is the strong limit of
STAR operators.We use the following convergences

n
1 1
(eﬁﬂefﬂ‘ge;ﬁeﬁ’g)

t—0

-1 1
—> exp (77; +e t7~g77’fet7'g) — e'irel = Lp.
n—o0 t t

Do you remember the finite-dimensional analogue?
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STC of flows of gradient vector fields = STC of flows Il

The last step of our strategy is proving that Lie(®) is dense in Vec(T9).

Theorem

For every f € Vec(T?), there exists (f,)nen < Lie(®) such that Ly is the
strong limit of (E,b} )neN-
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STC of flows of gradient vector fields = STC of flows Il

The last step of our strategy is proving that Lie(®) is dense in Vec(T9).

Theorem

For every f € Vec(T?), there exists (f,)nen < Lie(®) such that Ly is the
strong limit of (£¢} )neN-

The basic idea is that the Lie bracket of gradient vector fields is not a
gradient vector field. E.g.,

[V cos(x;), Vsin(x;)] = [cos(x;) 0y, sin(x}) 0y ] = Oy,
and

f%[v sin(x;) sin(xx), V COS(Xk)]+%[V sin(x;j) cos(xk), Vsin(xx)] = sin(x;j)0x,.
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Thanks for your attention!
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