

Experiments with Bose-Einstein condensates

From atom cooling to quantum control and simulation

QuanTEEM Winter School Dijon, 24/02/2025

Bruno Peaudecerf (CNRS)

Lecture II Quantum control with BEC

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

Control theory: get a dynamical system to operate **optimally** within physical bounds

 $\dot{\mathbf{x}}(t) = \boldsymbol{f}\left(\mathbf{x}(t), \boldsymbol{u}(t), t\right)$

Control parameter(s) u(t): design interactions, energy landscapes,... to achieve goal

From Bernoulli's brachistochrone (1696)

Museo Galileo Florence

to Euler-Lagrange **multipliers** (1766) for optimisation under constraints

To optimal trajectories for spacecrafts (1960's) *Sputnik, Apollo...*

In the 1960's **optimal control theory** gets formalized: a set of mathematical tools to find optimal solutions

Pontryagin Maximum Principle : a necessary condition

L. S. Pontryagin (1908-1988)

Quantum optimal control: extension to quantum systems

- Nuclear Magnetic Resonance
- Physical Chemistry
- Quantum technologies (various platforms) :
 - NV centers, photonic states in cavity, atoms (Rydberg, quantum gases)...

Alongside **other control strategies** : - Feedback theory

- Shortcuts to adiabaticity
- Machine learning, ...

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

Ultracold quantum gases are the result of increasing control of the atomic state

 Optical pumping (Kastler – Nobel 1966): light can control populations in magnetic sublevels of the electron

Kastler, Jour. Phys. Radium 11, 255 (1950)

• Laser cooling

(Chu, Cohen-Tannoudji, Phillips – Nobel 1997): optical pumping can affect external degrees of freedom of the atoms : cooling below the photon recoil limit

Lawall et al, Phys Rev Lett **75**, 4194 (1995)

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

Ultracold quantum gases are the result of increasing *control* of the atomic state

 Bose-Einstein condensation from evaporative cooling (Cornell, Ketterle, Wieman – Nobel 2001) atoms in a single quantum state

> Anderson et al, *Science 269, 198* (1995)

• Many-body quantum phase transitions : control of collective state of interacting atoms

Greiner et al, *Nature 415, 39 (2002)*

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

BEC in a sine potential

Optimal control in a sine potential

State reconstruction

Control with the non linearity

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

BEC in a sine potential

Optimal control in a sine potential

State reconstruction

Control with the non linearity

A cold atoms experiment (Toulouse)

Magneto-optical trap

A ⁸⁷Rb gas in a vacuum cell is :

- laser cooled

- magnetically trapped and evaporated
- trapped in far-off-resonant light beams (dipole trap),
- evaporated further... untill condensation

Bose-Einstein condensates (BEC) of ⁸⁷Rb: a macroscopic matterwave $(5 \cdot 10^5 \text{ atoms at } T \simeq 90 \text{ nK})$

BEC in a sine potentia

Optimal contro

BEC in an optical lattice potential

Laser beams **far detuned** (1064nm) from atomic transition (780nm)

Induces an **electric dipole** interacting with the field: **dipole force** deriving from a **conservative dipole potential**

We can then create a perfect sine potential with retro-reflected laser beams

 $V \propto I \propto 4I_0 \sin^2(kx)$

$$V_{dip} \propto rac{I}{\Delta}$$
 Detuning

Detuning (atomic transition-laser)

A matterwave in a sine potential

BEC in an optical lattice potential

$$V(x,t) = \frac{\mathbf{s}(t)E_L}{2}[1 - \cos(k_L x + \boldsymbol{\varphi}(t))]$$

Characteristic quantities : $k_L = \frac{2\pi}{d}, \ E_L = \frac{\hbar^2 k_L^2}{2m}$

 Beams independently controlled with Acousto-Optic Modulators (AOM), changing phase and amplitude

→ We can vary the depth and position of the lattice arbitrarily, to manipulate the BEC wavefunction

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

$$F = \frac{f(t)E_L}{2} [1 - \cos(k_L x + \varphi(t))]$$
The lattice Hamiltonian is invariant by translation of d : $\hat{T}_d = \exp\left(-\frac{i\hat{p}d}{\hbar}\right)$

$$[\hat{T}_d, \hat{H}] = 0$$

Common eigenstates can be found.

Bloch's theorem:

The eigenstates of a periodic potential are of the form:

$$\Psi_{n,q}(x) = e^{\frac{iqx}{\hbar}} u_{n,q}(x)$$

with $u_{n,q}(x)$ a d-periodic function $u_{n,q}(x + d) = u_{n,q}(x)$

q denotes the class of eigenstates of \hat{T}_d : $\hat{T}_d \Psi_{n,q}(x) = e^{\frac{iqd}{\hbar}} \Psi_{n,q}(x)$

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

$u_{n,q}(x) \text{ periodic } \Rightarrow \text{ Fourier series on plane waves}$ $\Psi_{n,q}(x) = \sum_{\ell} c_{\ell} e^{\frac{iqx}{\hbar}} \frac{e^{i\frac{\ell k_L x}{\hbar}}}{\sqrt{d}} \qquad |\Psi_{n,q}\rangle = \sum_{\ell} c_{\ell} |\chi_{\ell k_L + q}\rangle, \qquad \hat{p}|\chi_p\rangle = p|\chi_p\rangle$

Inject into stationary Schrödinger equation ($\varphi = 0$ for now):

$$\left(\frac{\hat{p}^2}{2m} + \frac{sE_L}{2}\cos(k_L\hat{x})\right) |\Psi_{n,q}\rangle = E_n(q) |\Psi_{n,q}\rangle$$

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

$$s \quad \int \quad \int \quad \int \quad \int \quad V(x,t) = \frac{s(t)E_L}{2} [1 - \cos(k_L x + \varphi(t))]$$

Injecting into stationary Schrödinger equation, gives the **central equation** (coupled equations on c_{ℓ}):

$$\left((\ell + q/k_L)^2 + \frac{s}{2}\right)c_{n,\ell}(q) - \frac{s}{4}\left(c_{n,\ell-1}(q) + c_{n,\ell+1}(q)\right) = \frac{E_n(q)}{E_L}c_{n,\ell}(q)$$

Matrix form:

$$C = \begin{pmatrix} \ddots & -\frac{s}{4} & 0\\ c_{\ell-1} \\ c_{\ell} \\ c_{\ell+1} \\ \cdots \end{pmatrix}, \qquad MC_n(q) = \frac{E_n(q)}{E_L} C_n(q), \qquad M = \begin{pmatrix} \ddots & -\frac{s}{4} & 0\\ -\frac{s}{4} & (\ell + q/k_L)^2 + \frac{s}{2} & -\frac{s}{4} \\ 0 & -\frac{s}{4} & \ddots \end{pmatrix}$$

Solve with finite Hilbert space size N

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

$$\left((\ell + q/k_L)^2 + \frac{s}{2}\right)c_{n,\ell}(q) - \frac{s}{4}\left(c_{n,\ell-1}(q) + c_{n,\ell+1}(q)\right) = \frac{E_n(q)}{E_L}c_{n,\ell}(q)$$

Band structure of the lattice levels $E_n(q)$

Eigenstates are characterized by their coefficients $c_{\ell}^{(q,n)}$

$$\rightarrow$$
 \cdot

In most experiments, we apply *adiabatically* the lattice potential on the BEC at rest (p = 0): we **prepare the lattice ground state**

What can we measure?

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

 We take an absorption image after a long time-of-flight

What happens:

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

What can we measure?

- The momentum distribution gives us exactly the $|c_{\ell}|^2$ (probabilities)
- Periodic wavefunction in the lattice
 ⇔ discrete momentum distribution

(above: ground state for s = 20)

Dynamics

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

If we start in the ground state, q = 0. The quasi-momentum q is preserved in the dynamics.

→ In the q = 0 subspace : wavefunction expanded on plane waves: $|\psi\rangle = \sum_{\ell \in \mathbb{Z}} c_{\ell} |\chi_{\ell}\rangle$

Time-dependent Schrödinger equation? With $t \rightarrow E_{\rm L} t/\hbar$

$$i\dot{c}_{\ell} = \ell^2 c_{\ell} - \frac{s(t)}{4} \left(e^{i\varphi(t)} c_{\ell-1} + e^{-i\varphi(t)} c_{\ell+1} \right)$$

Question : Can we engineer an arbitrary state, by tailoring the c_{ℓ} ?

Introduction BEC in a sine potential **Optimal control** State reconstruction Control with NL Conclusion

BEC in a sine potential

Optimal control in a sine potential

State reconstruction

Control with the non linearity

Optimal control

S

Introduction BEC in a sine potential **Optimal control** State reconstruction Control with NL Conclusion

$$\int \phi \phi(t) \quad V(x,t) = \frac{s(t)E_L}{2} [1 - \cos(k_L x + \varphi(t))]$$

Let's consider control with a **phase (lattice shaking)**:

$$i\dot{c}_{\ell} = \ell^2 c_{\ell} - \frac{s}{4} \left(e^{i\varphi(t)} c_{\ell-1} + e^{-i\varphi(t)} c_{\ell+1} \right)$$

$$\Leftrightarrow i\dot{C} = \mathcal{M}\left(\varphi(t)\right) \times C$$

Define a control problem:

- → Control duration $t_f \simeq 500 \mu s$
- → Control target C_T -- we want $C(t_f) \simeq C_T$ → Figure of merit:

e.g. fidelity
$$\mathcal{F} = \left| \left\langle \Psi_T | \Psi(t_f) \right\rangle \right|^2 = \left| C_T^{\dagger} \mathcal{C}(t_f) \right|^2$$

Gradient ascent

Introduction BEC in a sine potential **Optimal control** State reconstruction Control with NL Conclusion

• In practice : optimize a discretized phase evolution $\{\varphi_n\}$,

• through **gradient ascent**:

$$\varphi_n^{(k)} \to \varphi_n^{(k+1)} = \varphi_n^{(k)} + \epsilon \frac{\partial \mathcal{F}}{\partial \varphi_n^{(k)}}$$

Iterative process: for small ϵ ,

$$\mathcal{F}(\{\varphi_n^{(k+1)}\}) - \mathcal{F}(\{\varphi_n^{(k)}\}) \simeq \epsilon \sum_n \left(\frac{\partial \mathcal{F}}{\partial \varphi_n^{(k)}}\right)^2 > 0$$

 $\rightarrow \mathcal{F}$ increases.

Gradient ascent

Can be performed in a concise way using
 Pontryiagin's Hamiltonian

The concept:

In classical dynamics, the **least action principle** gives the equations of motion → Hamilton's formulation of mechanics.

Our extremalization problem can be formulated with an effective **action**. It corresponds to a **Hamiltonian** which must be extremal for the optimal control solution:

$$H_P(C, D, \varphi^*) = \max_{\varphi} H_P(C, D, \varphi^*)$$

Gradient ascent

 Can be performed in a concise way using Pontryiagin's Hamiltonian

In practice

For control $\{\varphi_n^{(k)}\}$:

- compute C(t), and the *adjoint* D(t):

$$D(t_f) = \frac{\partial \mathcal{F}}{\partial C^{\dagger}(t_f)} \quad i\dot{D} = \mathcal{M}\left(\varphi(t)\right) \times D$$

- build Pontryagin's Hamiltonian

$$H_{\rm P} = {\rm Re}\left(D^{\dagger}\dot{C}\right)$$

- Apply correction

$$\varphi_n^{(k)} \to \varphi_n^{(k+1)} = \varphi_n^{(k)} + \epsilon \frac{\partial H_{\rm P}}{\partial \varphi_n^{(k)}}$$

Gradient ascent

Introduction BEC in a sine potential **Optimal control** State reconstruction Control with NL Conclusion

Full experimental sequence

Introduction BEC in a sine potential **Optimal control** State reconstruction Control with NL Conclusion

- precise lattice depth calibration
- adiabatic lattice loading
- optimal phase control
- time-of-flight, imaging

Simulation of full experimental sequence

Requires excellent opto-electronic control to implement lattice motion, as well as calibration and stability of *s*

Control of populations

• Simple figure of merit for probabilities:

$$\mathcal{F} = 1 - \frac{1}{2} \sum_{\ell} (|c_{\ell}|^2 - p_{t,\ell})^2$$

• Populate a specific momentum state:

• Population of **multiple components**:

Control similar to accelerated lattice – non-adiabatic regime

For equal performance, 4-10x faster

All experiments $s \simeq 5$ $T_0 \simeq 60 \mu s$ Lattice trap typical period

N. Dupont *et al,* PRX *Quantum* **2**, 040303 (2021)

21

Introduction BEC in a sine potential **Optimal control** State reconstruction Control with NL Conclusion

Control of populations

 $p/\hbar k_{
m L}$

Introduction BEC in a sine potential **Optimal control** State reconstruction Control with NL Conclusion

• A robust method, for multiple patterns of populations

All $2^7 = 128$ equal-weights patterns realized!

22

Control of phases

- Figure of merit sensitive to **amplitudes**: $\mathcal{F}_Q = |\langle C_T | C(t_f) \rangle|^2$
- Test on a simple superposition state

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\chi_1\rangle + e^{i\Delta\phi} |\chi_{-1}\rangle \right)$$

Identify state from free evolution after preparation:

2

Lattice eigenstates

Introduction BEC in a sine potential **Optimal control** State reconstruction Control with NL Conclusion

At quasimomentum q, the n^{th} Bloch function reads

$$|\psi_{n,q}\rangle = \sum_{\ell \in \mathbb{Z}} c_{\ell}^{(n,q)} |\chi_{\ell+q}\rangle \qquad \chi_{\ell}(x) \propto e^{i\ell x}$$

With $c_{\ell}^{(n,q)}$ solutions of the stationary Schrödinger equation

\rightarrow We can prepare eigenstates of the lattice potential

The prepared state is stationary for a lattice moving at $v = -\hbar q/m$

> PRX Quantum 2, 040303 (2021) 24

Introduction BEC in a sine potential Optimal control **State reconstruction** Control with NL Conclusion

BEC in a sine potential

Optimal control in a sine potential

State reconstruction

Control with the non linearity

Phase space of the lattice potential

The wavefunction is periodic : identical in each lattice cell from $-\frac{d}{2}$ to $\frac{d}{2}$

 Phase space with classical trajectories of the pendulum

"Where is the wavefunction?"

Ideally we would like to plot a **probability distribution** over the phase space: **Heisenberg uncertainty principle prevents this!** it's impossible to assign a probability to a single point (x, p)

Semiclassical states

Define a (periodic) Gaussian state $|g(u, v)\rangle$ (on plane waves):

 $c_{\ell}(u,v) \propto e^{-i\ell u} e^{-(\ell-v)^2/\sqrt{s}}$

- Semiclassical, Heisenberg-limited state centered on $(\langle x \rangle, \langle p \rangle) = (u/k_L, v \times \hbar k_L)$
- For $s \gg 1$, $|g(0,0)\rangle$ tends to the lattice ground state (gaussian)
- Allows to define a quasi-distribution (Husimi 1940): $H_{[\rho]}(u,v) \equiv \frac{1}{2\pi} \langle g(u,v) | \rho | g(u,v) \rangle$

- Issue with semiclassical states : many momentum components, with many phases
- Requires full **state characterisation/tomography**:

How to reconstruct a complex quantum state from a series of projective measurements? Exploit "fingerprint" from evolution in static lattice

Introduction BEC in a sine potential Optimal control **State reconstruction** Control with NL Conclusion

- Issue with semiclassical states : many momentum components, with many phases
- Requires full state characterisation/tomography:

Exploit "fingerprint" from evolution in static lattice : Reconstruct a Maximum Likelihood estimate ρ_{ML} of the prepared state

 $\mathcal{L}[\rho] = \prod_{i} \pi_{i}^{f_{i}} \frac{\text{Experimental frequency}}{\text{Theoretical probability}}$ Maximized through an iterative method 28

Introduction BEC in a sine potential Optimal control **State reconstruction** Control with NL Conclusion

Superpositions of Gaussian states

• Gaussian state superpositions of opposite parity :

$$|\psi_{\text{even,odd}}\rangle \simeq \frac{1}{\sqrt{2}}(|g(u,v)\rangle \pm |g(-u,-v)\rangle),$$

Fidelity between the expected state and the reconstructed ML state:

 $\mathcal{F}_{\mathrm{exp}} = \langle \psi_{\mathrm{th}} | \rho_{\mathrm{ML}} | \psi_{\mathrm{th}} \rangle$

Purity of the reconstructed ML state:

$$\gamma = \mathrm{Tr}(\rho_{\mathrm{ML}}^2)$$

Purity is affected by fluctuations between measurements

Squeezed states

Squeezed state : modified variances with respect to the ground state (-) - 1

$$\xi = \Delta x(\xi) / \Delta x^{(g)} = \left(\Delta p(\xi) / \Delta p^{(g)} \right)^{-1}$$

 $\xi < 1 \rightarrow$ position squeezing

Introduction

Optimal control State reconstruction Control with NL Conclusion

BEC in a sine potential

Extreme squeezing

 A squeezed state with parameter ξ is similar to the ground state of a lattice with effective depth:

$$s_{\rm eff} = s/\xi^4$$

Preparation of a **technically inaccessible** state on **short timescale compared to adiabatic methods**

Extreme squeezing

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL Conclusion

Evolution during preparation (theory)

N. Dupont *et al., New J. Phys.* **25**, 013012 (2023)

Squeezing in position space equivalent to a x400 laser intensity increase !

Aside: brachistochrone

PHYSICAL REVIEW X 11, 011035 (2021)

Featured in Physics

Demonstration of Quantum Brachistochrones between Distant States of an Atom

Manolo R. Lam,¹ Natalie Peter,¹ Thorsten Groh[®],¹ Wolfgang Alt[®],¹ Carsten Robens[®],^{1,2} Dieter Meschede,¹ Antonio Negretti[®],³ Simone Montangero[®],⁴ Tommaso Calarco,⁵ and Andrea Alberti[®],^{1,*}

Introduction BEC in a sine potential Optimal control **State reconstruction** Control with NL Conclusion

Aside: brachistochrone

PHYSICAL REVIEW X 11, 011035 (2021)

Featured in Physics

in the second seco

The same control logic can be applied to transport problems!

32

Introduction BEC in a sine potential Optimal control **State reconstruction** Control with NL Conclusion

Introduction BEC in a sine potential Optimal control State reconstruction **Control with NL** Conclusion

BEC in a sine potential

Optimal control in a sine potential

State reconstruction

Control with the non linearity

Introduction BEC in a sine potential Optimal control State reconstruction **Control with NL** Conclusion

Recall that the atoms are **interacting**:

we can account for interactions at the mean-field level with the Gross-Pitaevskii equation

$$i\hbar \frac{d}{dt}\psi(r,t) = \left[-\frac{\hbar^2}{2m}\Delta + V(r) + Ng|\psi(r)|^2\right]\psi(r,t)$$

Introduction BEC in a sine potential Optimal control State reconstruction **Control with NL** Conclusion

Recall that the atoms are **interacting**:

we can account for interactions at the mean-field level with the Gross-Pitaevskii equation

$$i\hbar \frac{d}{dt}\psi(r,t) = \left[-\frac{\hbar^2}{2m}\Delta + V(r) + Ng|\psi(r)|^2\right]\psi(r,t)$$

In our 1D potential, **approximation**: integrate out slow transverse dynamics

$$i\frac{d}{dt}\psi(x,t) = \left[-\frac{d^2\psi(x,t)}{dx^2} - \frac{s(t)}{2}\cos(x+\varphi) + \beta|\psi(r)|^2\right]\psi(r,t)$$

eta : effective 1D interaction strength ($eta\!\sim\!\!1$)

Introduction BEC in a sine potential Optimal control State reconstruction **Control with NL** Conclusion

Recall that the atoms are **interacting**:

we can account for interactions at the mean-field level with the Gross-Pitaevskii equation

$$i\hbar \frac{d}{dt}\psi(r,t) = \left[-\frac{\hbar^2}{2m}\Delta + V(r) + Ng|\psi(r)|^2\right]\psi(r,t)$$

In our 1D potential, **approximation**: integrate out slow transverse dynamics

$$i\frac{d}{dt}\psi(x,t) = \left[-\frac{d^2}{dx^2} - \frac{s(t)}{2}\cos(x+\varphi) + \beta|\psi(r)|^2\right]\psi(r,t)$$

 $\beta\colon$ effective 1D interaction strength ($\beta\!\sim\!1$)

Dynamics in the zero quasi-momentum subspace:

$$i\dot{c}_{\ell} = \ell^2 c_{\ell} - \frac{s}{4} \left(e^{i\varphi(t)} c_{\ell-1} + e^{-i\varphi(t)} c_{\ell+1} \right) + \frac{\beta}{2\pi} \sum_{m,n\in\mathbb{Z}} c_m^* c_n c_{n+m-\ell}$$

non-linear term: many contributions

Introduction BEC in a sine potential Optimal control State reconstruction **Control with NL** Conclusion

$$i\dot{c}_{\ell} = \ell^2 c_{\ell} - \frac{s}{4} \left(e^{i\varphi(t)} c_{\ell-1} + e^{-i\varphi(t)} c_{\ell+1} \right) + \frac{\beta}{2\pi} \sum_{m,n\in\mathbb{Z}} c_m^* c_n c_{\ell-n+m}$$

Non-linearity \rightarrow numerical step-wise integration: $U(T) = U((M-1)\delta t \rightarrow M\delta t) \times \cdots U(\delta t \rightarrow 2\delta t) \times U(0 \rightarrow \delta t)$ with *M* large. Options :

1) brute force approach (e.g Runge-Kutta),

2) take advantage of the structure:

$$H(t) = H_0 + H_{int}$$

"simple" in
momentum space position space $\psi(x) = \sum_{\ell} \frac{c_{\ell}}{\sqrt{2\pi}} e^{i\ell x}$
 (c_{ℓ})

Trotter approximation:

 $U(\delta t) \simeq \exp(-iH_{int}(t)\delta t) \exp(-iH_0(\varphi)\delta t)$

Introduction BEC in a sine potential Optimal control State reconstruction **Control with NL** Conclusion

 $H_{int} = \beta \int dx |\psi(x,t)|^2 |x\rangle \langle x| \text{ is diagonal in position.}$ \rightarrow Change basis from momentum basis $|\ell\rangle$ (*N* plane waves) to an approximate, **discrete position basis** of the lattice cell $x \in [0,2\pi]$:

$$u_j(x_j = \frac{2\pi}{N}j) = \sum_{\ell} \frac{e^{-i\ell \frac{2\pi}{N}j}}{\sqrt{N}} |\ell\rangle$$

• $\langle u_j | \psi \rangle \simeq \sqrt{\frac{2\pi}{N}} \psi(x_j) = \sum_j \frac{c_\ell e^{i\ell \frac{2\pi}{N}j}}{\sqrt{N}}$ is the **discrete Fourier transform** of the c_ℓ

• We can represent an operator $W(\hat{x})$ as $W(\hat{x}) \simeq \sum_{j} W(x_{j}) |u_{j}\rangle \langle u_{j}|$

$$C = \begin{pmatrix} C_{\ell-1} \\ C_{\ell} \\ C_{\ell+1} \\ \cdots \end{pmatrix} \stackrel{\hat{R}}{\underset{R_{j,\ell}}{\longrightarrow}} \psi_{u} = \begin{pmatrix} \langle u_{j-1} | \psi \rangle \\ \langle u_{j} | \psi \rangle \\ \langle u_{j+1} | \psi \rangle \end{pmatrix} \stackrel{\text{basis change}}{\underset{(u_{j-1} | \psi)}{\longrightarrow}} \psi'_{u} \stackrel{\hat{R}^{\dagger}}{\underset{(u_{j+1} | \psi)}{\longrightarrow}} C' = e^{-iH_{int}(t)\delta t} C'$$

$$= \sum_{j} \exp\left(-i\beta |\psi(x_{j})|^{2} \delta t\right) |u_{j}\rangle\langle u_{j}| \qquad 35$$

Introduction BEC in a sine potential Optimal control State reconstruction **Control with NL** Conclusion

 $U(\delta t) \simeq \exp(-iH_{int}(t)\delta t) \exp(-iH_0(\varphi)\delta t)$

Compute in $|u_i\rangle$ basis

Compute in $|\ell\rangle$ basis

 \rightarrow Simplifies the matrix exponential for the interactions

 \rightarrow Gradient ascent can be adapted for optimal control with interactions

Example for moderate interactions $\beta = 0.5$, preparation of a squeezed state:

ramp optimized without interactions ramp optimized with interactions

ramp optimized without interactions ramp optimized with interactions

Limited impact on experimental data for realistic values of β

E. Dionis *et al.,* Front. Quantum Sci. Technol. **4**: 1540695 (2025) **36**

Conclusion

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL **Conclusion**

- Optimal control can be applied to a BEC in a lattice for efficient state-to-state transfer
- We can assess the quality of the result by state reconstruction
- Interactions can be taken into account

Extensions

S

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL **Conclusion**

Instead of enhanced *sensitivity* (for parameter estimation) we may want to be *robust* against the variation of a parameter

If *s* fluctuates from experiment to experiment, or to account for the finite size \rightarrow width Δq

- Select ensemble of discrete values $\{s_i\}, \{q_i\}$
- Modify the Gradient Ascent: at each iteration k, calculate all the corrections

$$\delta \varphi_{n,i,j}^{(k)} = \frac{\partial \mathcal{F}_{i,j}}{\partial \varphi_n^{(k)}}$$

where $\mathcal{F}_{i,j}$ is computed from the evolution with fixed (s_i, q_j)

• Modify φ for the next iteration with the **average correction**:

$$\varphi_n^{(k+1)} = \varphi_n^{(k)} + \epsilon \left\langle \delta \varphi_{n,i,j}^{(k)} \right\rangle_{i,j}$$

Fidelity map in {s,q} for non-robust preparation of a squeezed state

Extensions

Introduction BEC in a sine potential Optimal control State reconstruction Control with NL **Conclusion**

Instead of enhanced *sensitivity* (for parameter estimation) we may want to be *robust* against the variation of a parameter

If *s* fluctuates from experiment to experiment, or to account for the finite size \rightarrow width Δq

- Select ensemble of discrete values $\{s_i\}, \{q_j\}$
- Modify the Gradient Ascent: at each iteration k, calculate all the corrections

$$\delta \varphi_{n,i,j}^{(k)} = \frac{\partial \mathcal{F}_{i,j}}{\partial \varphi_n^{(k)}}$$

where $\mathcal{F}_{i,j}$ is computed from the evolution with fixed (s_i, q_j)

• Modify φ for the next iteration with the **average correction**:

$$\varphi_n^{(k+1)} = \varphi_n^{(k)} + \epsilon \left\langle \delta \varphi_{n,i,j}^{(k)} \right\rangle_{i,j}$$

Fidelity map in {s,q} for **robust** preparation of a squeezed state

The end

8

8

		••		•		•			•	•	•						•	•			•					•	•			. •		•	•	•	•		•	÷			
•					۲			۲			٠	•		٠			٠	٠			•		•	•		۰.				• •	٠	•			•	•	٠			•	
			- 6		٠		٠					٠		٠					1.1		•	•	•			a shi	•	•	•	÷	٠					•					
	n (e) N		2%; • • • • • •				•		•	٠	-	•		•	-	æ		- 35 •			•]	•							•		•	-									
	•				٠.	•	•	٠.				•	÷.			-		•			•	-	•					•	•			•			•	•		٠.			
					1	•		•			•	•	1				•				•		•	•				•	÷.		•	•									
	•			•	٠	٠	•	•			•	•	•				•	•		•	۲			• •				•	٠			۲	۰	•	•			•	9 9		
					a te			4.1																														2			