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Control theory: get a dynamical system to operate optimally
within physical bounds

x(t) = f (x(t), u(?), t)

Control parameter(s) u(t) : design interactions, energy landscapes,...
to achieve goal
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From Bernoulli’s brachistochrone (1696)

Museo Galileo
Florence

to Euler-Lagrange multipliers (1766)
for optimisation under constraints

To optimal trajectories for spacecrafts (1960’s)

Sputnik, Apollo...
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In the 1960’s optimal control theory gets formalized:
a set of mathematical tools to find optimal solutions

Pontryagin Maximum Principle : a necessary condition

L. S. Pontryagin (1908-1988)

Quantum optimal control: extension to quantum systems
- Nuclear Magnetic Resonance
- Physical Chemistry
- Quantum technologies (various platforms) :
NV centers, photonic states in cavity, atoms (Rydberg, quantum gases)...

Alongside other control strategies : - Feedback theory
- Shortcuts to adiabaticity

- Machine learning, ...
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Ultracold quantum gases are the result of increasing control of the atomic state

m'’= -1 0 +1

* Optical pumping (Kastler — Nobel 1966): 75,
light can control populations in
magnetic sublevels of the electron | 6°F,
_m=-2 -1 Hg 5?1»51 Ex +1 +2
Iig. 2.

Kastler, Jour. Phys. Radium 11, 255 (1950)

* Laser cooling
(Chu, Cohen-Tannoudji, Phillips — Nobel 1997):
optical pumping can affect external degrees of
freedom of the atoms : cooling below the photon
recoil limit

Lawall et al,
Phys Rev Lett 75, 4194 (1995) a
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Ultracold quantum gases are the result of increasing control of the atomic state

Bose-Einstein condensation

from evaporative cooling

(Cornell, Ketterle, Wieman — Nobel 2001)
atoms in a single quantum state

Anderson et al,
Science 269, 198 (1995)

a By °, o | [Tida * Many-body quantum phase transitions :
® B BAIEE ° - control of collective state of interacting atoms
e a f " g h
.‘. 0 " ’_ . ‘ Greiner et al,
" . Nature 415, 39 (2002)
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’ BEC in a sine potential

s
# Optimal control in a sine potential

4

’ State reconstruction

[
0 Control with the non linearity
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A cold atoms experiment (Toulouse) sors

Conftrol with NL
Conclusion

A 8’Rb gas in a vacuum cell is :
- laser cooled

- magnetically trapped and evaporated

- trapped in far-off-resonant light beams
(dipole trap),

- evaporated further... untill condensation

Bose-Einstein condensates (BEC) of 8/Rb:
a macroscopic matterwave
(5-10° atoms at T =~ 90 nK)

General view 6
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A matterwave in a sine potential

Conclusion

= BEC in an optical lattice potential

Laser beams far detuned (1064nm) from
atomic transition (780nm)

Induces an electric dipole interacting with
the field: dipole force
deriving from a conservative dipole potential

I Light intensity
Vdip o —

. . A :
We can then create a perfect sine potential Detuning
. (atomic transition-laser)
with retro-reflected laser beams

V o« I « 41, sin?(kx)
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A matterwave in a sine potential WS it
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= BEC in an optical lattice potential

S(t)EL

Viz,t) = 5

[1 —cos(krz + (t))]

Characteristic quantities :

* Beams independently controlled with
Acousto-Optic Modulators (AOM),
changing phase and amplitude

- We can vary the depth and position of the lattice arbitrarily,
to manipulate the BEC wavefunction
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Band structure s B
s [WVW V(e t) = S0P cos(hpe + (1)
¢ ipd
The lattice Hamiltonian is invariant by translation of d: 'T"d = exp (— T)
[Td,ﬁ] =(

Common eigenstates can be found.

Bloch’s theorem:

The eigenstates of a periodic p;txenUaI are of the form: g denotes the class of
Vo q(x) = ey, (x) eigenstates of T:

- iqd

T,¥,,(x) =e n¥Y,  (x

with uy, o (x) a d-periodic function u, ,(x + d) = uy, 4(x) a¥nq (%) na (%)



Band structure

s [VVVVVVV v = 208 e s oo

2

iqx

Eigenstates W, ;(x) = e » uy 4(x)

Up q(x) periodic =2 Fourier series on plane waves

.kax
igx e h
Lpn,q (x) = z cpe h |Lpn,q> = Z C#l)@lqﬁq) )
? vd ?

Inject into stationary Schrédinger equation (¢ = 0 for now):

A2

p ) "

(Zm + > COS(ka)) |‘Pn,q) = En(q)|q’n’q)
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Blxp) = p|x»)

10
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s [VVVVVVV v = 208 e s oo

2

Injecting into stationary Schrédinger equation,
gives the central equation (coupled equations on ¢y):

Ey,
(({’ +q/ky)* + ;) Cne(q) — (Cne 1(q) + ¢y, £+1(Q)) @) ——Cne(q)

E}
Matrix form:
S
. [ ) 0\
C nq S S S
c=["*t1 MC = C M=|-= (¢ k)2 42 2
¢, | w(q) = E, (), 2 (£ +q/ky) 5 3

Solve with finite Hilbert space size N 11
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K E s N 2
s [VVVVVVV v 5080 e+ oo X

d 1

s s En(q) -
((f +q/k)? + E) Cne(q) — 7 (Cn,{’—l(Q) + Cn,1?+1(CI)) = TE—LCn,f(Q) B 0 ~_
W 1]
>
Band structure of the lattice levels E,,(q) 5 (s =35)
-
Ll
Eigenstates are characterized by their coefficients c§q'") 3

e SAVAVAVAVAVAVAVARR

05 0 05
In most experiments, we apply adlabaticallythe lattice potential / q/k.
on the BEC at rest (p = 0): we prepare the lattice ground state

12
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What can we measure?

= \We take an absorption image

What happens:
after a long time-of-flight

x(tror) = x(0) + v(0)troF

~ v(0)trop
et If the initial distribution is small/ the time-of-flight is long
g| 1
- for tyop > —~ W typical trapping frequency,
ik mr
Ca”’l@ra G n(r, t = tTOF) — n(p =—,t= O)
D TOF

We measure the speed
(or momentum) distribution!

13



What can we measure?

= The momentum distribution gives us
exactly the |c,|? (probabilities)

= Periodic wavefunction in the lattice
& discrete momentum distribution

(above: ground state for s = 20)

Energy [E,]

Infroduction
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(s =5)
-2
-3
a—e— 0
05 0 0.5

q/k.

14
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K E s N 2
o VVVVVVV v = 8080 oo+ o) X

— 2
@(t) 1/\

If we start in the ground state, g = 0.

0_
The quasi-momentum q is preserved in the dynamics. N
W -
- In the g = 0 subspace : ?
wavefunction expanded on plane waves: |¢> = ZEGZ Cy |Xg> s -2
-3

Time-dependent Schrédinger equation?
With t — ELt/h -4 ®

ico = 0Pcy — % (eiw(t)ceq + e_i‘p(t)czﬂ)

Question : Can we engineer an arbitrary state,
by tailoring the c¢,? 15
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: E 2
§ [ VWVVW Viz,t) = S(t)QEL [1 — cos(krpx + ©(t))] X
@(t) 14
Let’s consider control with a phase (lattice shaking): ol
N
icp = 0%cp — ( W(t)Cg 1+ e_w“)c@rl) 3 |
>
& iC=M(p(t) x C g2 ¢
Define a control problem: -3 )
— Control duration t; = 500us n ®
—> Control target Cr -- we want C(tf) ~ (r
—> Figure of merit: 05 0 0.5
q/k
e.g. fidelity F = |(LPT|LP(tf) ‘C C(tf)‘ L

16
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* |n practice : optimize a discretized Dn
phase evolution {¢,,}, | IT *11
* through gradient ascent:
> <« — 1
(k) (k+1) (k) 1 Af ~ 250ns " N

_>SO’I’L —Spn _I_Ea (k) 0

Iterative process: for small €,

FUA ) - Ao = ey, () >0

- F increases.

17
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= Can be performed in a concise way using
Pontryiagin’s Hamiltonian

The concept:

In classical dynamics, the least action principle
gives the equations of motion
— Hamilton’s formulation of mechanics.

Our extremalization problem can be formulated
with an effective action. It corresponds to a
Hamiltonian which must be extremal for the
optimal control solution:

Hp(C,D,¢") = maxHp(C,D, ¢")
P

Yn

—= 1
- n N
At ~ 250ns tf ~ 100/18

18
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= (Can be performed in a concise way using ¥n, $
Pontryiagin’s Hamiltonian IT t
In practice I
For control {cp,(lk)}: .
- compute C(t), and the adjoint D(t) 01 TAL~ 2500 " Nlt 1008
o~

D(ty) = 5ergy 1D = M(p(t) x D

- build Pontryagin’s Hamiltonian

Hp = Re (DTC‘)
- Apply correction
C,Ofgﬁ) — sog?,kﬂ) = gor,g,,k) + € aff}j) Gradient ascent

Dpm o 19
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Full experimental sequence

so \VVVVVVVY : _/

‘p(t) 0' i [
2 L
o R S /L\M/w
= precise lattice depth calibration o : i |
= adiabatic lattice loading
= optimal phase control %
= time-of-flight, imaging S
0

loading QOC  TOF

Simulation of full experimental sequence

Requires excellent opto-electronic control to implement lattice motion,

as well as calibration and stability of s
20
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Control of populations

= Simple figure of merit for probabilities:
1
F=1-3 ;ucuz — pre)

* Populate a specific momentum state:

_ 2ndex 7=0.89£0.01 From =0.89] )
S T 1 _ Control similar to accelerated lattice
2m c2 F=0.49 £0.03 Froum = 0.52 : : .
g — non-adiabatic regime
1 1 1 1 1 1 1
0 0.75 15 0 2 4 6 8 10
o TTEe T T T Eagos  Tor equal performance, 4-10x faster
—zn\“MVWV
1 1 1 1 | 1 1
° o, 02 e All experiments s = 5
«  Population of multiple components: Ty ~ 60pus
o A F=093T007 0798 Lattice trap typical period
—2 - | |
" T T T T T T N. DUpOnt Etal,

0 15-4 -2 0 2 4 21
s pIPk, PRX Quantum 2, 040303 (2021)
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Control of populations

* A robust method, for multiple patterns of populations

p/hkL

All 27 = 128 equal-weights patterns realized!

22
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Control of phases

* Figure of merit sensitive to amplitudes:  Fo = |(Cr|C(t))|?

e Test on asimple superposition state

¥) = % (Ix1) +€2?[x-1))

|dentify state from free evolution after preparation:

Yr) = == (Ix1) + [x=1)) [Yr) = 5 (Ix1) — Ix—1)
V2 V2
°] y 1 .1 0
l : |
— 25 ?25_
y 1,1 <
I 207 r I I Iso- !
75 - 75 |
100 - | * ] l I l 100 4 PRX Quantum 2,
2 o0 2 2 o 2 2 o 2 040303 (203;1)
Experiment pihki Theory Experiment Ihi Theory
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At quasimomentum q, the nt" Bloch function reads

Wn,q) = Zeez Cén’q)’X6+q> Xz(z) x ert"

With cg””Q) solutions of the stationary Schrodinger equation

- We can prepare eigenstates of the lattice potential

s = 8.2
01 U a b 11
TN _ |
NERpL EE 75: l; %D The prepared state is
q s stationary for a lattice
~ o ]
%—4- e’ go : moving at v = —hq/m
ae -
e =
—6- = 751
PRX Quantum 2,

05 0 05 TR0 209 040303 (2021)
q/ kv p/ bk 24
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States in phase space

Phase space of the lattice potential

The wavefunction is periodic :

. o . d d
identical in each lattice cell from —Eto >

—> Phase space with classical trajectories of
the pendulum

*Where is the wavefunction?”

Ideally we would like to plot a probability distribution

over the phase space:

Heisenberg uncertainty principle prevents this!

it’s impossible to assign a probability to a single point (x, p)
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States in phase space

= Semiclassical states

Define a (periodic) Gaussian state |g(u, v)) (on plane waves):

Infroduction
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co(u,v) oc e~ Hue=(E=v)"/ /s

* Semiclassical, Heisenberg-limited state
centered on ({x),{(p)) = (u/ky,v X hky)

p/(hk;)

0.15

0.10

0.05

* Fors > 1,|g(0,0)) tends to the

0.00

lattice ground state (gaussian)

* Allows to define a quasi -distribution (Husimi 1940):

—d/2 0

p1(u, v) = —(g(u v)|plg(u,v))

d/2

19(0,0)) 26
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Optimal control

States in phase space .

Conclusion

* [ssue with semiclassical states :
many momentum components, with many phases

* Requires full state characterisation/tomography:

x/d
How to reconstruct a complex

guantum state from a series of
projective measurements?
Exploit "fingerprint" from
evolution in static lattice

27



* Requires full state characterisation/tomography:

States in phase space

Issue with semiclassical states :

many momentum components, with many phases

J J
-5 0 5 -5 0 5
Lt i i1t 11111 Lt i i1 11111
_5—. a b I |
- . ..... B = =8 ®s
41 g “EE - EE=
. "u likelihood LR AR
elinoo
r 03 "a o T L Re s e S ES
_ S| s =EB
: . d LR L
5_ ..... . —a I -
0 arg{p;;} 21 1
4 4c¢ d
L2 e
o= ||= -
Q_z 1 ————
-4 -
| | I | | I 1 | | | I
0 40 80 0 40 80

Experimental data

t (us

Evolution from py;

o

(9
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Exploit "fingerprint" from
evolution in static lattice :
Reconstruct a Maximum Likelihood
estimate p, of the prepared state

tip) = | |l

Experimental frequency

Theoretical probability

l
Maximized through an iterative method ,g
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Superpositions of Gaussian states .

Conclusion

* Gaussian state superpositions of
th. opposite parity :
g state
L
= 1
exp. ML |[Wevenoda) = NG (lgw,v)) £ |g(—u, —v))),
state

Fidelity between the expected state
and the reconstructed ML state:

d e Fexp = (Y| pvL |[¥en)
u +7/2 +7/2
v £/ £/ Purity of the reconstructed ML state:
Fesp 0.89 0.91
~ 0.82 0.91 v = Tr( P%&L)
s 5.5+0.5 5.30+40.25

Purity is affected by fluctuations between
even (+) odd (—) measurements 29




Squeezed states

* Squeezed state : modified variances with respect to the ground state
~1
§ = Mx(§)/MxD = (Ap(§)/4p'?)

¢ < 1 - position squeezing

1 49

0 theory
g
Q

exp. ML
| state

1/¢ 0.44 0.62 1.65 2.75 4.34
Fexp 0.99 0.96 0.98 0.93 0.75

9 1.00 1.00 1.00 0.92 0.72
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N. Dupont et al,,
New J. Phys. 25,
013012 (2023)

30
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Exireme squeezing o 2EmmAei
Con(’r:rol wli’rh'NL
onciusion

* A squeezed state with parameter £ is similar to the ground state
of a lattice with effective depth:

Seff = S/&*

Ground state, s = 5.6

|

Squeezed state
s =15.6,1/¢§ =4.34

Seff = 2000

Preparation of a technically inaccessible state
on short timescale compared to adiabatic methods

31
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Exireme squeezing oo omereo

Conftrol with NL
Conclusion

= Evolution during preparation (theory)
t

> _\’\—J*/‘/\.\,-\,./\f\/“’\- N. Dupont et al,
New J. Phys. 25,

013012 (2023)

Squeezing in position space
equivalent to a x400
laser intensity increase |

32
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Aside: brachistochrone , Spimicons
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PHYSICAL REVIEW X 11, 011035 (2021)

Featured in Physics

Demonstration of Quantum Brachistochrones between Distant States of an Atom

Manolo R. Lam,1 Natalie Peter,1 Thorsten Groh ,1 Wolfgang Alt¢ ,1 Carsten Robens ,1’2 Dieter I\:Ieschede,l
Antonio Negretti® ,3 Simone Montangero( ,4 Tommaso Calarco,5 and Andrea Alberti®"

(c) !

The same control logic can be
applied to transport problems!

‘ winit > ‘ wtarget >

R
(o]
£
|_
mmm Optimal quantum control
r Optically measured position
TF \ \ T
/ .
External drive
=== Linear control
L l > 2 - 1
\ 0  Position d Yo Xirap(t) d

32
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Aside: brachistochrone s
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PHYSICAL REVIEW X 11, 011035 (2021)

Featured in Physics

Demonstration of Quantum Brachistochrones between Distant States of an Atom

Manolo R. Lam,1 Natalie Peter,1 Thorsten Groh ,1 Wolfgang Alt¢ ,1 Carsten Robens ,1’2 Dieter I\:Ieschede,l
Antonio Negretti® ,3 Simone Montangero( ,4 Tommaso Calarco,5 and Andrea Alberti®"

.I'[MT Tes N4 _ T +$ . 6 ¢ Q #’, ¢ ' $° ¢
i ANBRY B ot I AN? 7Y S IR LI0 ;".'.'"-—".'.-""‘.-’ o
i _‘ 0 N ., ¢+ O T80 0%
i [ ¢ _

The same control logic can be
= | applied to transport problems!
>
=057 Linear transport
© . .

SR Optimized transport
% 1 2 3 4 5 6 7 8 9 10 u_ 12 13 14 32

Transport duration T (t,0)
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Non-linearity s iAo
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Recall that the atoms are interacting:
we can account for interactions at the mean-field level with the Gross-Pitaevskii equation

2

M) = [~ o 4 V) + N2 i,

33
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Non-linearity s iAo
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Recall that the atoms are interacting:
we can account for interactions at the mean-field level with the Gross-Pitaevskii equation

d 2
' —— = ——A N 2 ;t
ih—p(r, D) [ A+ V() + Nghp(r)] ]w )

o In our 1D potential, approximation:

integrate out slow transverse dynamics

d d*(x,
\ 9 1) = [_ 153(; t) _ @cos(x + @) + ﬁlt/)(r)lzl (T, t)

[ effective 1D interaction strength (f~1)

33
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Non-linearity s iAo

Control with NL
Conclusion

Recall that the atoms are interacting:
we can account for interactions at the mean-field level with the Gross-Pitaevskii equation

d h*
ih— (1) = [—%A +V () + Ng|¢(r>|2]w<r, 5

In our 1D potential, approximation:
integrate out slow transverse dynamics

d d*
() = [— - Peost o)+ ﬁ|¢<r>|2] W, o)

[ effective 1D interaction strength (f~1)

Dynamics in the zero quasi-momentum subspace:

.o 2 8 . t s t /B _I; :
icp = 0Pcyp — = (ezso( )Ce_1 4 e ip( )C£+1> 4+ = E : C CnCrtm—t non-linear term
T

4 many contributions
m,ne Y 33



Non-linearity

iép = 0%y — Z (eiw(t)Ceq + e_w(t)CzH) + % Z Cr o CnCl—mntm

Non-linearity = numerical step-wise integration:

U(T) =U((M — 1)6t » Mét) x ---U(6t = 26t) X U(0 — 6t) with M large.
Options :

1) brute force approach (e.g Runge-Kutta),

2) take advantage of the structure:

H(t) = Hy + Hip;

“simple” in “simple” in

. Co i
momentum space position space Y (x) = Zf\/%ewx
(Cp)

Trotter approximation:
U(6t) = exp(—iHn (t)6t) exp(—iHy(¢)4t)

Infroduction
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N O n - Ii n e q r".y smfgr%?jslﬁ:cﬁﬁ
Conclusion

H;. = B dx [W(x, t)|?|x){x]| is diagonal in position.
—> Change basis from momentum basis |£) (N plane waves) to
an approximate, discrete position basis of the lattice cell x € [0,2mr]:

wui(x; =—1j)

2T (5 el{)ZWn] g
.« (u|y) = Wl/)(x]-) =Y, {’W is the discrete Fourier transform of the c,

* We can represent an operator W (X) as W (X) = 2. W(xj) |uj><uj|

__ basis change basis change
C = Co—1 R lpu — (uj—lllp) 5 l/),u R\I-_, C' =
o e | ) et )t e~ HineDAEC
elﬁw (

35

Ujypq | 2
Re=t AP S e (o) o)

J



Infroduction
BEC in a sine potential

Non-linearity s iAo

Control with NL
Conclusion

U(6t) = exp(—iH;u ()6t) exp(—iHo(¢)dt)
/ \
Compute in |u;) basis Compute in |€) basis

- Simplifies the matrix exponential for the interactions
— Gradient ascent can be adapted for optimal control with interactions

Example for moderate interactions § = 0.5, preparation of a squeezed state:

2.0 (a) 1.00 v \
1.51 0.98
L0 0.96/\ \ .. .
o8 » Limited impact on
s e experimental data for
—0.5
w 030 realistic values of 3
—1.51 0.88
=205 25 50 75 100 125 150 0800 02 0.4 0.6 08 1.0 E. Dionis et G/.,
S (“Sj) , , o é _ _ _ Front. Quantum Sci. Technol. 4:
ramp optimized without interactions ramp optimized without interactions 1540695 (2025) 26

ramp optimized with interactions ramp optimized with interactions
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C o n C I U S I o n State reconstruction
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Conclusion

* Optimal control can be applied to a BEC in a lattice for
efficient state-to-state transfer

* We can assess the quality of the result by state reconstruction

* Interactions can be taken into account

* Multiple uses:

f
/ Control \ fll/)1> U\((p(t)) |l/) 1)

W2y 0 )
| J 1 |

[Y'3)
Lecture Il [ J
E. Flament

N. Ombredane 2t 37

N
A
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[ ]
Extensions tote fecoruicion

Conclusion

Instead of enhanced sensitivity (for parameter estimation)
we may want to be robust against the variation of a parameter

S.WVWVV

@(t)
If s fluctuates from experiment to experiment,
or to account for the finite size = width Aq
* Select ensemble of discrete values {s;}, {q;} o
* Modify the Gradient Ascent:
at each iteration k, calculate all the corrections

(k) _ aj:'i,j —020 -0.15 -0.10 -0.05 0.00 0.05 010 015 0.20
5<,0n 0 a(p%k)
where F; ; is computed from the evolution with fixed (s;,q;)  Fidelity map in {s,q} for

« Modify ¢ for the next iteration with the average correction: non-robust preparation of a
k+1) ) squeezed state

Pn = Pn T € <6(pn l,]>l 38

)
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Conclusion

Instead of enhanced sensitivity (for parameter estimation)
we may want to be robust against the variation of a parameter

S.WVVWV

17.0

@(t)
If s fluctuates from experiment to experiment,
or to account for the finite size 2 width Aq
* Select ensemble of discrete values {s;}, {q;} "
* Modify the Gradient Ascent:
at each iteration k, calculate all the corrections
5o — 0Fij R

Pnii = 7 (&
n,i,j acp%)
where F; ; is computed from the evolution with fixed (s;,qj)  Fidelity map in {s,q} for robust

« Modify ¢ for the next iteration with the average correction: preparation of a squeezed state

(k+1) _ (k) (k)
Pn = Pn + € <6(pn,i,j>i _ 38
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The end
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