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Introduction

1

Control theory: get a dynamical system to operate optimally
within physical bounds

Optimal

Speed

Accuracy Ressources

Stabilization

Control parameter(s) 𝒖𝒖(𝒕𝒕) : design interactions, energy landscapes,…
to achieve goal

𝐱̇𝐱(𝑡𝑡) = 𝒇𝒇 (𝐱𝐱 𝑡𝑡 ,𝒖𝒖 𝑡𝑡 , 𝑡𝑡)

Introduction
BEC in a sine potential

Optimal control
State reconstruction

Control with NL
Conclusion



2

Introduction

From Bernoulli’s brachistochrone (1696)

to Euler-Lagrange multipliers (1766) 
for optimisation under constraints

Museo Galileo 
Florence

To optimal trajectories for spacecrafts (1960’s)
Sputnik, Apollo…
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Introduction

In the 1960’s optimal control theory gets formalized:
a set of mathematical tools to find optimal solutions

Pontryagin Maximum Principle : a necessary condition

Quantum optimal control: extension to quantum systems
- Nuclear Magnetic Resonance
- Physical Chemistry
- Quantum technologies (various platforms) :

NV centers, photonic states in cavity, atoms (Rydberg, quantum gases)…

Alongside other control strategies : - Feedback theory
- Shortcuts to adiabaticity
- Machine learning, …

L. S. Pontryagin (1908-1988)
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Introduction
Ultracold quantum gases are the result of increasing control of the atomic state

• Optical pumping (Kastler – Nobel 1966):
light can control populations in 
magnetic sublevels of the electron

Kastler, Jour. Phys. Radium 11, 255 (1950)

• Laser cooling
(Chu, Cohen-Tannoudji, Phillips – Nobel 1997):
optical pumping can affect external degrees of 
freedom of the atoms : cooling below the photon 
recoil limit

Lawall et al,
Phys Rev Lett 75, 4194 (1995)
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Introduction

• Bose-Einstein condensation 
from evaporative cooling
(Cornell, Ketterle, Wieman – Nobel 2001)
atoms in a single quantum state

Anderson et al,
Science 269, 198 (1995)

• Many-body quantum phase transitions :
control of collective state of interacting atoms

Greiner et al,
Nature 415, 39 (2002)

Ultracold quantum gases are the result of increasing control of the atomic state
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A cold atoms experiment (Toulouse)

Magneto-optical trap
© Lucas Gabardos

Bose-Einstein condensates (BEC) of 87Rb:
a macroscopic matterwave
(5 ⋅ 105 atoms at 𝑇𝑇 ≃ 90 nK)

General view

A 87Rb gas in a vacuum cell is :
- laser cooled
- magnetically trapped and evaporated
- trapped in far-off-resonant light beams
(dipole trap), 
- evaporated further… untill condensation
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A matterwave in a sine potential

 BEC in an optical lattice potential

Laser beams far detuned (1064nm) from
atomic transition (780nm)

Induces an electric dipole interacting with
the field: dipole force
deriving from a conservative dipole potential

𝑉𝑉𝑑𝑑𝑑𝑑𝑑𝑑 ∝
𝐼𝐼
Δ

Light intensity

Detuning
(atomic transition-laser)

We can then create a perfect sine potential
with retro-reflected laser beams

𝑉𝑉 ∝ 𝐼𝐼 ∝ 4𝐼𝐼0 sin2(𝑘𝑘𝑘𝑘)
7

𝑑𝑑 = 532 nm = 𝜆𝜆/2

Introduction
BEC in a sine potential

Optimal control
State reconstruction

Control with NL
Conclusion



8

A matterwave in a sine potential

 BEC in an optical lattice potential

Characteristic quantities :

• Beams independently controlled with
Acousto-Optic Modulators (AOM),
changing phase and amplitude

𝑑𝑑 = 532 nm = 𝜆𝜆/2

We can vary the depth and position of the lattice arbitrarily, 
to manipulate the BEC wavefunction
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Band structure

The lattice Hamiltonian is invariant by translation of 𝑑𝑑:
�𝑇𝑇𝑑𝑑 , �𝐻𝐻 = 0

Common eigenstates can be found.

𝒅𝒅

𝒔𝒔

�𝑇𝑇𝑑𝑑 = exp −
𝑖𝑖𝑝̂𝑝𝑑𝑑
ℏ

Bloch’s theorem:
The eigenstates of a periodic potential are of the form:

Ψ𝑛𝑛,𝑞𝑞 𝑥𝑥 = 𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖
ℏ 𝑢𝑢𝑛𝑛,𝑞𝑞 𝑥𝑥

with 𝑢𝑢𝑛𝑛,𝑞𝑞 𝑥𝑥 a 𝑑𝑑-periodic function 𝑢𝑢𝑛𝑛,𝑞𝑞 𝑥𝑥 + 𝑑𝑑 = 𝑢𝑢𝑛𝑛,𝑞𝑞(𝑥𝑥)

𝑞𝑞 denotes the class of 
eigenstates of �𝑇𝑇𝑑𝑑:

�𝑇𝑇𝑑𝑑Ψ𝑛𝑛,𝑞𝑞 𝑥𝑥 = 𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖
ℏ Ψ𝑛𝑛,𝑞𝑞 𝑥𝑥
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Band structure

𝒅𝒅

𝒔𝒔

Eigenstates Ψ𝑛𝑛,𝑞𝑞 𝑥𝑥 = 𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖
ℏ 𝑢𝑢𝑛𝑛,𝑞𝑞 𝑥𝑥

𝑢𝑢𝑛𝑛,𝑞𝑞(𝑥𝑥) periodic  Fourier series on plane waves

Ψ𝑛𝑛,𝑞𝑞 𝑥𝑥 = �
ℓ

𝑐𝑐ℓ 𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖
ℏ
𝑒𝑒𝑖𝑖
ℓ𝑘𝑘𝐿𝐿𝑥𝑥
ℏ

𝑑𝑑
Ψ𝑛𝑛,𝑞𝑞 = �

ℓ

𝑐𝑐ℓ|𝜒𝜒ℓ𝑘𝑘𝐿𝐿+𝑞𝑞⟩ , 𝑝̂𝑝 𝜒𝜒𝑝𝑝 = 𝑝𝑝 𝜒𝜒𝑝𝑝

Inject into stationary Schrödinger equation (𝜑𝜑 = 0 for now):
𝑝̂𝑝2

2𝑚𝑚
+
𝑠𝑠𝐸𝐸𝐿𝐿

2
cos 𝑘𝑘𝐿𝐿 �𝑥𝑥 Ψ𝑛𝑛,𝑞𝑞 = 𝐸𝐸𝑛𝑛(𝑞𝑞) Ψ𝑛𝑛,𝑞𝑞
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Band structure

𝒅𝒅

𝒔𝒔

Injecting into stationary Schrödinger equation,
gives the central equation (coupled equations on 𝑐𝑐ℓ):

ℓ + 𝑞𝑞/𝑘𝑘𝐿𝐿 2 +
𝑠𝑠
2

𝑐𝑐𝑛𝑛,ℓ 𝑞𝑞 −
𝑠𝑠
4
𝑐𝑐𝑛𝑛,ℓ−1 𝑞𝑞 + 𝑐𝑐𝑛𝑛,ℓ+1 𝑞𝑞 =

𝐸𝐸𝑛𝑛 𝑞𝑞
𝐸𝐸𝐿𝐿

𝑐𝑐𝑛𝑛,ℓ(𝑞𝑞)

Matrix form:

𝐶𝐶 =
…
𝑐𝑐ℓ−1
𝑐𝑐ℓ
𝑐𝑐ℓ+1

…

, 𝑀𝑀𝐶𝐶𝑛𝑛 𝑞𝑞 =
𝐸𝐸𝑛𝑛 𝑞𝑞
𝐸𝐸𝐿𝐿

𝐶𝐶𝑛𝑛 𝑞𝑞 , 𝑀𝑀 =

⋱ −
𝑠𝑠
4

0

−
𝑠𝑠
4

ℓ + 𝑞𝑞/𝑘𝑘𝐿𝐿 2 +
𝑠𝑠
2

−
𝑠𝑠
4

0 −
𝑠𝑠
4

⋱

Solve with finite Hilbert space size N
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Band structure

𝒅𝒅

𝒔𝒔

ℓ + 𝑞𝑞/𝑘𝑘𝐿𝐿 2 +
𝑠𝑠
2

𝑐𝑐𝑛𝑛,ℓ 𝑞𝑞 −
𝑠𝑠
4
𝑐𝑐𝑛𝑛,ℓ−1 𝑞𝑞 + 𝑐𝑐𝑛𝑛,ℓ+1 𝑞𝑞 =

𝐸𝐸𝑛𝑛 𝑞𝑞
𝐸𝐸𝐿𝐿

𝑐𝑐𝑛𝑛,ℓ(𝑞𝑞)

(𝑠𝑠 = 5)Band structure of the lattice levels 𝑬𝑬𝒏𝒏(𝒒𝒒)

In most experiments, we apply adiabatically the lattice potential
on the BEC at rest (𝑝𝑝 = 0): we prepare the lattice ground state

Eigenstates are characterized by their coefficients 𝑐𝑐ℓ
(𝑞𝑞,𝑛𝑛)
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What can we measure?

 We take an absorption image
after a long time-of-flight

What happens:

𝑥𝑥 𝑡𝑡TOF = 𝑥𝑥 0 + 𝑣𝑣 0 𝑡𝑡TOF
≃ 𝑣𝑣 0 𝑡𝑡TOF

If the initial distribution is small/ the time-of-flight is long

for 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇 ≫
1
𝜔𝜔

, 𝜔𝜔 typical trapping frequency,

𝑛𝑛 𝒓𝒓, 𝑡𝑡 = 𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑛𝑛(𝒑𝒑 =
𝑚𝑚𝒓𝒓
𝑡𝑡𝑇𝑇𝑇𝑇𝑇𝑇

, 𝑡𝑡 = 0)

We measure the speed
(or momentum) distribution!
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What can we measure?

(𝑠𝑠 = 5)

ground
state

 The momentum distribution gives us 
exactly the 𝑐𝑐ℓ 2 (probabilities)

 Periodic wavefunction in the lattice
⟺ discrete momentum distribution

(above: ground state for 𝑠𝑠 = 20)
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Dynamics

𝒔𝒔(𝐭𝐭)

𝝋𝝋 𝒕𝒕

Time-dependent Schrödinger equation?
With 𝑡𝑡 → 𝐸𝐸L𝑡𝑡/ℏ

If we start in the ground state, 𝑞𝑞 = 0.
The quasi-momentum q is preserved in the dynamics.

 In the 𝑞𝑞 = 0 subspace : 
wavefunction expanded on plane waves:

Question : Can we engineer an arbitrary state, 
by tailoring the 𝒄𝒄ℓ?
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Optimal control

𝒔𝒔

𝝋𝝋 𝒕𝒕

Let’s consider control with a phase (lattice shaking):

Define a control problem:
 Control duration 𝑡𝑡𝑓𝑓 ≃ 500μs
Control target 𝑪𝑪𝑻𝑻 -- we want 𝐶𝐶 𝑡𝑡𝑓𝑓 ≃ 𝐶𝐶𝑇𝑇
 Figure of merit:

e.g. fidelity ℱ = Ψ𝑇𝑇 Ψ 𝑡𝑡𝑓𝑓
2 = 𝐶𝐶𝑇𝑇

†𝐶𝐶(𝑡𝑡𝑓𝑓)
2
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Gradient ascent

• In practice : optimize a discretized
phase evolution 𝜑𝜑𝑛𝑛 ,

• through gradient ascent:

Iterative process: for small 𝜖𝜖, 

 ℱ increases.

𝝐𝝐ℱ

𝜑𝜑
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Gradient ascent

 Can be performed in a concise way using
Pontryiagin’s Hamiltonian

The concept:

In classical dynamics, the least action principle
gives the equations of motion 
 Hamilton’s formulation of mechanics.

Our extremalization problem can be formulated
with an effective action. It corresponds to a 
Hamiltonian which must be extremal for the 
optimal control solution:

𝐻𝐻𝑃𝑃 𝐶𝐶,𝐷𝐷,𝜑𝜑∗ = max
𝜑𝜑

𝐻𝐻𝑃𝑃 𝐶𝐶,𝐷𝐷,𝜑𝜑∗
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Gradient ascent

For control {𝜑𝜑𝑛𝑛
(𝑘𝑘)}:

- compute        , and the adjoint :

- build Pontryagin’s Hamiltonian

- Apply correction

Gradient ascent

 Can be performed in a concise way using
Pontryiagin’s Hamiltonian

In practice
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Full experimental sequence

 precise lattice depth calibration
 adiabatic lattice loading
 optimal phase control
 time-of-flight, imaging

Simulation of full experimental sequence

𝒔𝒔(𝒕𝒕)

𝝋𝝋 𝒕𝒕

Requires excellent opto-electronic control to implement lattice motion,
as well as calibration and stability of 𝒔𝒔
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Control of populations

 Simple figure of merit for probabilities:

• Populate a specific momentum state:

All experiments 𝑠𝑠 ≃ 5

Lattice trap typical period

Control similar to accelerated lattice
– non-adiabatic regime

For equal performance, 4-10x faster

• Population of multiple components:

N. Dupont et al, 
PRX Quantum 2, 040303 (2021) 21
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Control of populations

All 27 = 128 equal-weights patterns realized!

• A robust method, for multiple patterns of populations
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Control of phases

• Figure of merit sensitive to amplitudes:

• Test on a simple superposition state

Identify state from free evolution after preparation: 

tim
e 
𝑡𝑡−

𝑡𝑡 𝑓𝑓
(µ

s)

tim
e 
𝑡𝑡−

𝑡𝑡 𝑓𝑓
(µ

s)
PRX Quantum 2, 
040303 (2021) 

Experiment Theory Experiment Theory
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Lattice eigenstates
At quasimomentum 𝑞𝑞, the 𝑛𝑛th Bloch function reads

With            solutions of the stationary Schrödinger equation

We can prepare eigenstates of the lattice potential

The prepared state is
stationary for a lattice
moving at 𝑣𝑣 = −ℏ𝑞𝑞/𝑚𝑚

24

PRX Quantum 2, 
040303 (2021) 
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States in phase space

 Phase space of the lattice potential

The wavefunction is periodic :
identical in each lattice cell from −𝑑𝑑

2
to 𝑑𝑑

2

Phase space with classical trajectories of 
the pendulum

‟Where is the wavefunction?ʺ

Ideally we would like to plot a probability distribution 
over the phase space:
Heisenberg uncertainty principle prevents this!
it’s impossible to assign a probability to a single point (𝑥𝑥,𝑝𝑝)

25
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 Semiclassical states

States in phase space

Define a (periodic) Gaussian state |𝑔𝑔 𝑢𝑢, 𝑣𝑣 ⟩ (on plane waves):

• Semiclassical, Heisenberg-limited state
centered on 𝑥𝑥 , 𝑝𝑝 = 𝑢𝑢/𝑘𝑘L,𝑣𝑣 × ℏ𝑘𝑘L

• For 𝑠𝑠 ≫ 1, 𝑔𝑔 0,0 tends to the
lattice ground state (gaussian)

• Allows to define a quasi-distribution (Husimi 1940):

𝐻𝐻 𝜌𝜌 𝑢𝑢, 𝑣𝑣 ≡
1
2𝜋𝜋

⟨𝑔𝑔(𝑢𝑢, 𝑣𝑣)|𝜌𝜌|𝑔𝑔 𝑢𝑢, 𝑣𝑣 ⟩

𝑠𝑠 = 5.5

=2πx/d

|𝑔𝑔 0,0 ⟩ 26
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States in phase space

• Issue with semiclassical states :
many momentum components, with many phases

• Requires full state characterisation/tomography:

𝑠𝑠 = 5.5

How to reconstruct a complex
quantum state from a series of 
projective measurements?
Exploit "fingerprint" from
evolution in static lattice

27
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States in phase space

• Issue with semiclassical states :
many momentum components, with many phases

• Requires full state characterisation/tomography:

Experimental data Evolution from 𝜌𝜌𝑀𝑀𝑀𝑀

𝑠𝑠 = 5.5

Exploit "fingerprint" from
evolution in static lattice : 
Reconstruct a Maximum Likelihood
estimate 𝝆𝝆𝑴𝑴𝑴𝑴 of the prepared state

ℒ 𝜌𝜌 = �
𝑖𝑖

𝜋𝜋𝑖𝑖
𝑓𝑓𝑖𝑖

Experimental frequency

Theoretical probability

28Maximized through an iterative method
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Superpositions of Gaussian states

th. 
state

exp. ML
state

Fidelity between the expected state 
and the reconstructed ML state:

Purity of the reconstructed ML state:

Purity is affected by fluctuations between
measurements

• Gaussian state superpositions of 
opposite parity :

𝜓𝜓even,odd ≃
1
2

(|𝑔𝑔 𝑢𝑢, 𝑣𝑣 ⟩ ± |𝑔𝑔 −𝑢𝑢,−𝑣𝑣 ⟩),

29
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Squeezed states
• Squeezed state : modified variances with respect to the ground state

𝜉𝜉 = Δ𝑥𝑥 𝜉𝜉 /Δ𝑥𝑥(𝑔𝑔) = Δ𝑝𝑝 𝜉𝜉 /Δ𝑝𝑝 𝑔𝑔 −1

𝜉𝜉 < 1 position squeezing

1/𝜉𝜉 0.44 0.62 1.65 2.75 4.34

theory

exp. ML
state

N. Dupont et al., 
New J. Phys. 25, 
013012 (2023) 

30
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Extreme squeezing

• A squeezed state with parameter 𝜉𝜉 is similar to the ground state 
of a lattice with effective depth:

𝑠𝑠eff = 𝑠𝑠/𝜉𝜉4

Ground state, 𝑠𝑠 = 5.6

Squeezed state 
𝑠𝑠 = 5.6, 1/𝜉𝜉 = 4.34

𝒔𝒔𝐞𝐞𝐞𝐞𝐞𝐞 ≃ 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐

Preparation of a technically inaccessible state
on short timescale compared to adiabatic methods

31
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Extreme squeezing

 Evolution during preparation (theory)

Squeezing in position space
equivalent to a x400 
laser intensity increase !

N. Dupont et al., 
New J. Phys. 25, 
013012 (2023) 

32
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Aside: brachistochrone

The same control logic can be
applied to transport problems!
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Aside: brachistochrone

The same control logic can be
applied to transport problems!

Linear transport
Optimized transport
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Non-linearity

Recall that the atoms are interacting:
we can account for interactions at the mean-field level with the Gross-Pitaevskii equation

𝑖𝑖𝑖
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜓𝜓 𝑟𝑟, 𝑡𝑡 = −

ℏ2

2𝑚𝑚
Δ + 𝑉𝑉 𝑟𝑟 + 𝑁𝑁𝑁𝑁 𝜓𝜓 𝑟𝑟 2 𝜓𝜓 𝑟𝑟, 𝑡𝑡
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Non-linearity

Recall that the atoms are interacting:
we can account for interactions at the mean-field level with the Gross-Pitaevskii equation

𝑖𝑖𝑖
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜓𝜓 𝑟𝑟, 𝑡𝑡 = −

ℏ2

2𝑚𝑚
Δ + 𝑉𝑉 𝑟𝑟 + 𝑁𝑁𝑁𝑁 𝜓𝜓 𝑟𝑟 2 𝜓𝜓 𝑟𝑟, 𝑡𝑡

In our 1D potential, approximation: 
integrate out slow transverse dynamics

𝑖𝑖
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜓𝜓 𝑥𝑥, 𝑡𝑡 = −

𝑑𝑑2𝜓𝜓 𝑥𝑥, 𝑡𝑡
𝑑𝑑𝑥𝑥2

−
𝑠𝑠 𝑡𝑡

2
cos(𝑥𝑥 + 𝜑𝜑) + 𝛽𝛽 𝜓𝜓 𝑟𝑟 2 𝜓𝜓 𝑟𝑟, 𝑡𝑡

𝛽𝛽: effective 1D interaction strength (𝛽𝛽~1 )
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Non-linearity

Recall that the atoms are interacting:
we can account for interactions at the mean-field level with the Gross-Pitaevskii equation

𝑖𝑖𝑖
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜓𝜓 𝑟𝑟, 𝑡𝑡 = −

ℏ2

2𝑚𝑚
Δ + 𝑉𝑉 𝑟𝑟 + 𝑁𝑁𝑁𝑁 𝜓𝜓 𝑟𝑟 2 𝜓𝜓 𝑟𝑟, 𝑡𝑡

In our 1D potential, approximation: 
integrate out slow transverse dynamics

𝑖𝑖
𝑑𝑑
𝑑𝑑𝑑𝑑
𝜓𝜓 𝑥𝑥, 𝑡𝑡 = −

𝑑𝑑2

𝑑𝑑𝑥𝑥2
−
𝑠𝑠 𝑡𝑡

2
cos(𝑥𝑥 + 𝜑𝜑) + 𝛽𝛽 𝜓𝜓 𝑟𝑟 2 𝜓𝜓 𝑟𝑟, 𝑡𝑡

𝛽𝛽: effective 1D interaction strength (𝛽𝛽~1 )

Dynamics in the zero quasi-momentum subspace:

non-linear term: 
many contributions
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Non-linearity

Non-linearity numerical step-wise integration:
𝑈𝑈 𝑇𝑇 = 𝑈𝑈 (𝑀𝑀 − 1)𝛿𝛿𝛿𝛿 → 𝑀𝑀𝛿𝛿𝛿𝛿 × ⋯𝑈𝑈 𝛿𝛿𝛿𝛿 → 2𝛿𝛿𝛿𝛿 × 𝑈𝑈(0 → 𝛿𝛿𝛿𝛿) with 𝑀𝑀 large.
Options : 
1) brute force approach (e.g Runge-Kutta), 
2) take advantage of the structure:

𝐻𝐻 𝑡𝑡 = 𝐻𝐻0 + 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖

Trotter approximation:

𝑈𝑈 𝛿𝛿𝛿𝛿 ≃ exp(−𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)𝛿𝛿𝛿𝛿) exp(−𝑖𝑖𝐻𝐻0(𝜑𝜑)𝛿𝛿𝛿𝛿)

‟simpleˮ in 
momentum space
(𝑐𝑐ℓ)

‟simpleˮ in 
position space 𝜓𝜓 𝑥𝑥 = ∑ℓ

𝑐𝑐ℓ
2𝜋𝜋
𝑒𝑒𝑖𝑖𝑖𝑖𝑖
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Non-linearity

𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛽𝛽∫ 𝑑𝑑𝑑𝑑 𝜓𝜓 𝑥𝑥, 𝑡𝑡 2|𝑥𝑥⟩⟨𝑥𝑥| is diagonal in position.
Change basis from momentum basis |ℓ⟩ (𝑁𝑁 plane waves) to 

an approximate, discrete position basis of the lattice cell 𝑥𝑥 ∈ [0,2𝜋𝜋]:

𝑢𝑢𝑗𝑗(𝑥𝑥𝑗𝑗 =
2𝜋𝜋
𝑁𝑁
𝑗𝑗) = �

ℓ

𝑒𝑒−𝑖𝑖𝑖
2𝜋𝜋
𝑁𝑁 𝑗𝑗

𝑁𝑁
|ℓ⟩

• 𝑢𝑢𝑗𝑗 𝜓𝜓 ≃ 2𝜋𝜋
𝑁𝑁
𝜓𝜓 𝑥𝑥𝑗𝑗 = ∑𝑗𝑗

𝑐𝑐ℓ𝑒𝑒
𝑖𝑖𝑖2𝜋𝜋𝑁𝑁 𝑗𝑗

𝑁𝑁
is the discrete Fourier transform of the 𝑐𝑐ℓ

• We can represent an operator 𝑊𝑊( �𝑥𝑥) as 𝑊𝑊 �𝑥𝑥 ≃ ∑𝑗𝑗𝑊𝑊 𝑥𝑥𝑗𝑗 𝑢𝑢𝑗𝑗 𝑢𝑢𝑗𝑗

𝐶𝐶 =
…
𝑐𝑐ℓ−1
𝑐𝑐ℓ
𝑐𝑐ℓ+1

…

𝜓𝜓𝑢𝑢 =
…

𝑢𝑢𝑗𝑗−1 𝜓𝜓
𝑢𝑢𝑗𝑗 𝜓𝜓
𝑢𝑢𝑗𝑗+1 𝜓𝜓

…

�𝑅𝑅

𝑅𝑅𝑗𝑗,ℓ =
𝑒𝑒𝑖𝑖𝑖

2𝜋𝜋
𝑁𝑁 𝑗𝑗

𝑁𝑁

basis change

exp(−𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)𝛿𝛿𝛿𝛿)

≃�
𝑗𝑗

exp −𝑖𝑖𝑖𝑖 𝜓𝜓 𝑥𝑥𝑗𝑗
2
𝛿𝛿𝛿𝛿 𝑢𝑢𝑗𝑗 𝑢𝑢𝑗𝑗

𝜓𝜓𝜓𝑢𝑢 �𝑅𝑅†
basis change

𝐶𝐶′ =
𝑒𝑒−𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡 𝛿𝛿𝛿𝛿𝐶𝐶
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Non-linearity

𝑈𝑈 𝛿𝛿𝛿𝛿 ≃ exp(−𝑖𝑖𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)𝛿𝛿𝛿𝛿) exp(−𝑖𝑖𝐻𝐻0(𝜑𝜑)𝛿𝛿𝛿𝛿)

Compute in |ℓ⟩ basisCompute in |𝑢𝑢𝑗𝑗⟩ basis

 Simplifies the matrix exponential for the interactions
Gradient ascent can be adapted for optimal control with interactions

Example for moderate interactions 𝛽𝛽 = 0.5, preparation of a squeezed state:

ramp optimized without interactions
ramp optimized with interactions

ramp optimized without interactions
ramp optimized with interactions

Limited impact on 
experimental data for 
realistic values of 𝛽𝛽

E. Dionis et al., 
Front. Quantum Sci. Technol. 4:
1540695 (2025)
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Conclusion

• Optimal control can be applied to a BEC in a lattice for 
efficient state-to-state transfer

• We can assess the quality of the result by state reconstruction
• Interactions can be taken into account

• Multiple uses:
Quantum Optimal 

Control

Quantum 
Simulation Optimal 

sensing

Quantum 
gates

N. Ombredane

|𝜓𝜓1⟩
|𝜓𝜓2⟩
|𝜓𝜓3⟩

…

|𝜓𝜓𝜓1⟩
|𝜓𝜓′2⟩
|𝜓𝜓′3⟩

…

�𝑈𝑈(𝜑𝜑 𝑡𝑡 )

E. Flament

Lecture III
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Extensions

Instead of enhanced sensitivity (for parameter estimation)
we may want to be robust against the variation of a parameter

𝒔𝒔

𝝋𝝋 𝒕𝒕
If 𝑠𝑠 fluctuates from experiment to experiment,
or to account for the finite size  width Δ𝑞𝑞
• Select ensemble of discrete values 𝑠𝑠𝑖𝑖 , {𝑞𝑞𝑗𝑗}
• Modify the Gradient Ascent:

at each iteration 𝑘𝑘, calculate all the corrections

𝛿𝛿𝜑𝜑𝑛𝑛,𝑖𝑖,𝑗𝑗
(𝑘𝑘) = 𝜕𝜕ℱ𝑖𝑖,𝑗𝑗

𝜕𝜕𝜑𝜑𝑛𝑛
(𝑘𝑘)

where ℱ𝑖𝑖,𝑗𝑗 is computed from the evolution with fixed (𝑠𝑠𝑖𝑖 , 𝑞𝑞𝑗𝑗)
• Modify 𝜑𝜑 for the next iteration with the average correction:

𝜑𝜑𝑛𝑛
(𝑘𝑘+1) = 𝜑𝜑𝑛𝑛

(𝑘𝑘) + 𝜖𝜖 𝛿𝛿𝜑𝜑𝑛𝑛,𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑖𝑖,𝑗𝑗

Fidelity map in {s,q} for 
non-robust preparation of a 
squeezed state
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Extensions

Instead of enhanced sensitivity (for parameter estimation)
we may want to be robust against the variation of a parameter

𝒔𝒔

𝝋𝝋 𝒕𝒕
If 𝑠𝑠 fluctuates from experiment to experiment,
or to account for the finite size  width Δ𝑞𝑞
• Select ensemble of discrete values 𝑠𝑠𝑖𝑖 , {𝑞𝑞𝑗𝑗}
• Modify the Gradient Ascent:

at each iteration 𝑘𝑘, calculate all the corrections

𝛿𝛿𝜑𝜑𝑛𝑛,𝑖𝑖,𝑗𝑗
(𝑘𝑘) = 𝜕𝜕ℱ𝑖𝑖,𝑗𝑗

𝜕𝜕𝜑𝜑𝑛𝑛
(𝑘𝑘)

where ℱ𝑖𝑖,𝑗𝑗 is computed from the evolution with fixed (𝑠𝑠𝑖𝑖 , 𝑞𝑞𝑗𝑗)
• Modify 𝜑𝜑 for the next iteration with the average correction:

𝜑𝜑𝑛𝑛
(𝑘𝑘+1) = 𝜑𝜑𝑛𝑛

(𝑘𝑘) + 𝜖𝜖 𝛿𝛿𝜑𝜑𝑛𝑛,𝑖𝑖,𝑗𝑗
𝑘𝑘

𝑖𝑖,𝑗𝑗

Fidelity map in {s,q} for robust
preparation of a squeezed state
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