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Introduction

Experiments
Conclusion

* |n general, we can try to calculate or simulate a
phenomenon to gain understanding

“Classical” simulation:
astronomical clocks

ldentify mechanisms
+ implement them
in analog device

* Many qguantum phenomena are hard to

calculate on a (classical) computer. 434 ‘ ‘ ‘ * ‘ ‘ ‘ 84

«— Oy,

T. Fukuhara et al., Nature Physics 9, 235-241 (2013)

Quantum simulation

Nature isn’t classical, (...), and if you want to make a
simulation of nature, you’d better make it quantum
mechanical.

R.P. Feynman, Int. J. Theor. Phys. 21, 467488 (1982)
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* Bose-Einstein condensates (ultracold atoms generally)
are a versatile platform for quantum simulation :

Optical lattices
Tweezer arrays

— Potentials can be engineered with light
(e.g. lattice without defects)

Bloch (MPQ) Kaufman (JILA)

— Interactions can be controlled Vary density,
Magnetic (Feshbach) resonances
— State can be prepared and measured with . |
o Single fermions
precision on a 2D lattice
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Examples of quantum simulation with cold atoms

Localization and coherent scattering

Realization with a quantum pendulum

Experiments with BEC
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Examples of quantum simulation with cold atoms

Localization and coherent scattering

Realization with a guantum pendulum

Experiments with BEC
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Localization

Many-body physics : the Mott fransition

Conclusion

Mott insulator: a conducting material becomes insulating at low temperature
due to electron-electron interactions.

Simulation: cold atoms in an optical lattice

! i ! ! ! !Electrons N

o oy Y
TR AYAVAVAAY
= - =
© ® ® €. Atoms
Potential from ions Potential from lasers
Strong interactions: the system can be described
tunnelling teractions by the Hubbard Hamiltonian:

A=-J > &é, +UY ik, > (u—e.,)h,

¢ pE - <i,j>,0o I 1,0
E = Competition between delocalization from
tunneling and increased interaction 3




tunnelling interactions

position

momentum
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Many-body physics : the Mott fransition

Experiments
Conclusion

Increasing density
— energetically favorable for atoms to
localize on the sites of the lattice

Quantum phase transition

between a delocalized superfluid (BEC)

— peaks in the momentum distribution

and localized atoms, without global coherence
- momentum distribution of a “single well”



tunnelling

interactions

Infroduction
Quantum simulation

Many-body physics : the Mott fransition

Experiments
Conclusion

Increasing density
— energetically favorable for atoms to
localize on the sites of the lattice

Quantum phase transition

between a delocalized superfluid (BEC)

— peaks in the momentum distribution

and localized atoms, without global coherence
- momentum distribution of a “single well”

First experimental observation:
Greiner et al., Nature 415, 39 (2002)
The birth of quantum simulation
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Many-body physics : the Mott fransition

Experiments

tunnelling interactions

A few years later: quantum gas
e microscope allows to look at the spatial

&r distribution of atoms.
 \ 1 &~
e ‘aor boams
Mirr0r1064nm/+

\ 4

High-resolution
objective
(NA = 0.68)

BEC Mott insulator

J. Sherson et al., Nature 467, 68 (2010)

Conclusion
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Artificial magnetic fields

Experiments
Conclusion

Lorentz force on charged particle in a magnetic field:

F=qvXxB
Neutral atoms have no charge!
But: y (
I
|
a» - @
Rotating trap Inertial force in
= X
in the lab frame the trap frame Fr=2mvxQ
(Coriolis)

Effective magnetic fields can be implemented by
setting BECs in rotation 5
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Artificial magnetic fields

Engels et al. Phys. Rev. Lett. 90, 170405 (2003)
(Cornell group/JILA)

720 um |

The way the condensate reacts to the rotation is to include vortices,
zeroes in density around which the phase does a full turn:
vortex=quantum of rotation



Infroduction
Quantum simulation

Artificial magnetic fields

. Charged particles in a magnetic field acquire a phase around a closed
trajectory C : Aharonov-Bohm phase @5 = fCA. dx

Engineer complex-valued tunneling with laser-induced
transitions in a lattice

L li
T EREPIne - effective magnetic flux: controllable, staggered

P N S WY N Physics of Hall effect:
Je'iq)m,nn & A
AN =

——0—O0—0— = ]

| Cyclotron-like orbits of cold atoms in a lattice

—O——0—— O—0O— o4 w0z 0 oz with artificial magnetic field
\'@: (X) /cx
e COBTA AN AL A .
—([3 <|> <[> <|>— R ompr ¥ %@m° %g»_:;-;:ww 5 M. Aidelsburger et al.,
oo s % o <+t %  Phys. Rev. Lett. 107, 255301 (2011) 3

Time (ms) Time (ms)
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Fermionic systems

P(2)a
y Ultracold fermions can also be prepared

mixture of two states | T) and |{)

CcCD
camera

Interactions (scattering length ag) can be tuned via
a Feshbach resonance as(B)

Probe beam Atom cloud
o0
One can measure the adl g J
equation of state P(u, T) of 20 o
the Fermi gas in the unitary = 03'&
limita —» oo 15 - ‘#’OC.
I R R T T A regime encountered in

H/kgT

Data from Ku et al., Science 335, 563 (2012)

neutron stars 6
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Many other systems

Conclusion
a d
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Localization effects

= A detour through condensed matter physics

How do we understand conduction in solids?

Drude model:
 Electrons feel the force of the electric field F = —eE

* Electrons scatter randomly in impurities/defects in the solid
with mean free path £,

The electrons effectively perform a random walk:

Infroduction
Quantum simulation
Localization
Quantum pendulum

Experiments
Conclusion
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Diffusion contribution to conductivity cuamseazson

Experiments
Conclusion

= The random walk is associated to a diffusion process:

50 25 —
sl un-averaged o 20l Disorder averaged | |
« 30l % Sl In d dimensions, the average
gzo- ém_ distance travelled is
10} 2 st T_z(t) = 2dDt
0f o ~ Diffusion constant

0 200 400 600 800 1000 0 200 400 600 800 1000
Random walk steps Random walk steps

* The diffusion constant is a key quantity for conductivity
Ingeneral, j = cE with o =e? X p(E)x D(E) (E = typical energy of charge carriers)

i N

p(E) = density of states of D (E) =Diffusion constant
charge carriers p o Yts
= 0 for an insulator, - d

high for a good conductor 9
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Diffusion with quantum particles

Conclusion

* If we think of the diffusion of quantum particles, we have to consider all
amplitudes of probability connecting two points:

! Transfer probability:

I
P1-2 = ‘z,ai(l - 2)
l

Iy .
J 0.
P12 E _|ai|2+ E _ _|ai||aj|el(9l o1
[ [#]

* To describe typical properties of solids, theorists perform an average over disorder
(statistical average over position of scatterers)

_ _ T2 NPARICEED) Interference term with (random) phase
P1-2 Zilall T Ziijlalllaf |e differences that depend on disorder

average = ()

2
(i = possible paths)

Classical term
(sum of probabilities) 10
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Weak localization el o

Experiments
Conclusion

D12 = z.|ai|2 + z _Iaillaj|el(9i_91) s there no difference between
: ‘#J particles and waves?
Pclass,1-2 average = 0

There is, for looped trajectories:

If the dynamics is time-reversible, the reverse path has exactly
the same phase as the direct path:

—> non-zero interference contribution (positive)
—> Enhanced return probability:
Weak localization
— Reduced diffusion
—> Conductivity is decreased! o =e’pD

11
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Weak localization el o

Experiments
Conclusion

* The quantum effect of weak localization should decrease
conductivity/increase resistance

Mg |
o _
* Experimental evidence? Place conductor in a magnetic Dy L
field:break time-reversal symmetry o | 0050 l
S
oj‘ - i
Experiment on a magnesium film . O_L A . i

(Bergman, Phys. Rep. 107, 1984) 45K

ol 64K

I\/Iagnetore5|stance

94K

13.9K 7

Breaking of weak localization 199K T
reduces resistance!

0 H

Magnetic field B 11
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Strong localization

* Philip W. Anderson (1923-2020)

In the presence of “strong enough” disorder,
total suppression of diffusion:
D=0

A cumulative effect of many loops:
the probability to diffuse is destroyed by destructive interference

A peculiar insulator: charge carriers are available (p # 0),

_ 2 _
g=e"pl =0 but cannot diffuse! Anderson insulator

Anderson model:

H= Z Wila) | 4 (|i + 1) (@] + |i) (6 + 1)) LU
Random on-site Uniform coupling
energy constant between sites W;

12



Infroduction
Quantum simulation

Strong localization

* Philip W. Anderson (1923-2020)

In the presence of “strong enough” disorder,
total suppression of diffusion:
D=0

A cumulative effect of many loops:
the probability to diffuse is destroyed by destructive interference

A peculiar insulator: charge carriers are available (p # 0),

_ 2 _
g=e"pl =0 but cannot diffuse! Anderson insulator

Theory predicts Anderson localization:
- always in true 1D and 2D systems

- Above a certain energy (mobility edge) in 3D b
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Signatures in reciprocal space o

Experiments

Conclusion

* We have considered transition probabilities between positions (diffusion)
with scatterers randomly distributed in space

* What about momentum?

Consider a plane wave, incident on the same kind of disordered medium

T °
kl\:>.

e
kzi//.(_..

interface

Two scattering paths contributing to
diffusion from plane wave with k; to K,

As before, to get the probability of transfer from
1 to 2, we need to sum amplitudes

D1y = Z |a;|? +Z |a;||a;|e'®@i=9))
[ L#]

In general, the disorder average washes out the
interference terms

P1-2 = Dclass,1-2

13
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Coherent backwards scattering Guonmim et

Experiments
Conclusion

Does plane wave scattering always behave

: ° |
ki TS g f classically? No!
: ° _ 2 1(0;—6 )
! o ° D1y = E la; |~ + E |ai||aj|e =Y
S e i i%]
ky = —Kq o For a time-reversible system, if k, = —k4,

the reverse path contributes constructively

Doubling of the probability to scatter backwards:

Coherent Backwards Scaitering (CBS)
A signhature in reciprocal space of Weak Localization

14
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Coherent backwards scattering ot

Experiments
Conclusion

= A simple experiment:

pl
p2

. BS
=]

IA_L| cCcD

From: “Disorder and interference”,

Sample

Laser

§ Single pattern: Average pattern:
C. Muller and D. Delande, Lecture at Les Houches, 2009 speckle from multiple  CBS peak
scattering

Has been observed with multiple waves and scatterers:
light, acoustic, seismic, matter waves...

F. Jendrzejewski et al, PRL 109, 195302 (2025) 15
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Coherent forward scattering v eton

Experiments
Conclusion

" |s there a signature in the scattering of plane waves of strong localization?

Yes, Coherent Forward Scattering (CFS)

Can be seen as a sort of
“double backscattering”

|s associated with strong
(Anderson) localization

Has only been observed numerically, or
indirectly in experiments

16

Karpiuk et al., PRL 109, 190601 (2012)
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The quantum pendulum

Experiments
Conclusion

= Dynamics of a pendulum:

. h?  d? L /¢ ;
H=— + mgL(1 — cos
.
Exactly analogous to the lattice potential V(x), |w(x)|2 ) ¢ = 2nx/d
X e ¢ t
Seg |
SELI
X
A “depth” variation s(t) corresponds to - —-d 0 d

moving the pivot point up and down

A “phase” variation cos(cp + <p(t))
corresponds to adding a forced rotation

Our system is also called
“shaken pendulum”
“shaken rotor” 17
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The quantum pendulum

Experiments
Conclusion

Special connection between the shaken pendulum and ,
V(x), 9|

disorder physics
Kicked rotor model:

- p’\z SELI

A(t) = ——KCOS(J?)E 5(t —n) .

2 n —d 0 d
Periodic “kick” of infinite strength with the potential
(units chosen so that period T = 1, spatial period d = 2n
 What is the classical dynamics?
Between kicks, momentum is constant: call (x,, p,,) the
coordinates just before the kick at t = n: Standard map
Pn+1 = Pn — K sin(xy) Emblematic model

Xn+1 = Xn + Pn+1 of chaotic dynamics 18
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Classical dynamics of kicked rotor

Experiments
Conclusion

= Periodically modulated system:
represent the trajectory in phase space at each period

K=3 Stroboscopic phase portrait

1:_-...& = _.-:_:i!:_'_i- b ora A% T, Ty
] . d ) TS tie s
B | P P I | Fogpoh
. ..
\/ S
1F 4
e
- ",
-
¥ M2 )
i p, J v, t
’ - ¥ wimd i
t et .
-
n+41 - o I 3 :
1
- B
.
8
¥ *
.
i e e
{ & )

A R —

t L J ’; o

- some trajectories
remain close to an orbit:
regular trajectories

- Some trajectories

AP R explore all of the phase
. space at random:

Pn+1 = Pn — K'sin(xy) chaotic trajectories
Xn+1 = Xn + Pn+1

M. Martinez (2021)

19



Classical dynamics of kicked rotor

= Periodically modulated system:

represent the trajectory in phase space at each period

Itn—l tn
N 7
pT <. tni1
_>-< * \
x ‘{b:}q___

M. Martinez (2021)

Pn+1 =Pn— K Sin(xn)
Xn+1 = Xp T Dn+1

- ;:..: oo

—T2 4 s St

Infroduction
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Localization
Quantum pendulum
Experiments
Conclusion

For a strong enough kick,
all trajectories are chaotic

Momentum evolves
diffusively:
__  K?
2 ~ 1t
Pm=7

20
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Quantum dynamics

Experiments
Conclusion

A() =2 — K cos(2) T 8(t — 1)

The evolution operator over 1 period is always the same:

ip? iK cos(%)
Ur =exp| — o7 exp r
e e

Here h, = —i[x, p] is an effective Planck constant:
AmE, T
he =
h

State evolution : |Y(t = n)) = UF|y(0))

21
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Quantum dynamics

Conclusion

= What does the evolution over one period do?

ip? iK cos(%)
Ur =exp| — o7 exp r
e e

Rhe _iRhe
Momentum state |p = fh, ) cos(X) = 5(3 he +e fe )
acquires a phase du;?i a period: > Translations in momentum of .
-2 The kick operator exp (— il CZS(’C))
e

The free evolution operator
gives pseudo-random phases
to diffusive trajectories

(he/4AT & Q)
Diffusion + Random phases = ingredients for localization! -

connects states on a ladder of momenta
lp = th,) (£ € N):
Diffusion on momentum ladder
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Dynamical localization

Experiments
Conclusion

Ur = exp (— ;ﬁ) exp (iK COS(@) T )~e

A state initially peaked in momentum experiences
dynamical localization (localization in momentum space)

After many periods of evolution e
Characterized by a localization length &, t=plh,,

And in reciprocal space?
Can we see CBS and CFS with the kicked rotor?

23



Infroduction
Quantum simulation
Localization

Quantum dynamics

Experiments
Conclusion

e Can we see CBS and CFS with the kicked rotor?

Solid state physics: Kicked rotor:
- Diffusion/localization in x - Diffusion/localization in p
- Reciprocal space p hosts CBS and CFS - Reciprocal space x hosts CBS and CFS
- CBS for time-reversal symmetry: - CBS for time-parity symmetry
X=X p—Dp
p——p X = =X
t > —t t > —t

peaked inifial condition in momentum - localization,
peaked initial condition in position = CBS and CFS

24



CBS and CFS in the kicked rotor

-n 0 n
t = 0, peaked probability
atx = —m/2

Infroduction

Quantum simulation
Localization
Quantum pendulum
Experiments
Conclusion

Simulations with the kicked rotor

K =10h, =1,
1073 1 t = 200, another peak!
return of probability at x = /2
= N Coherent Forward Scattering!
0 | | | 10—3 4
= 0 m
X —_
t = 4, probability has flattened & . |, ]
a peak reappears at x = —m/2
Coherent Backward Scattering!

25
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Can we do experiments?

Experiments
Conclusion

An infinitely short/strong kick is not realistic.

* Shaken-rotor model :

( /p\z Stroboscopic phase-space
< Hpg(X,D,T) = -5 tK cos(x+ ¢(1)) F(7)
% B = ih T ™ periodic modulation:
%, P] = ihegy Ny
Kick strength F(or)=1+2 z cos(2nnt + @,,) = N
= ,.:m K
n=1 < N
— : : & =
 Generalization of QKR : equivalent if ¢(t) = 0 and Ny — o I i
Qo
[y
* Finite and tunable chaotic sea (L « Ny): control of localization regime
* Disorder average using different F(7)

inducing differents dynamics

Additional phase modulation
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Can we do experiments?

Experiments
Conclusion

An infinitely short/strong kick is not realistic.

* Shaken-rotor model :

(A /p\z Stroboscopic phase-space
< Hep(X,D,T) = > + K cos(x+ ¢(1)) F(1)
% ﬁ] — iR T Ao periodic modulation:
- eff Nu
Kick strength Fx)=1+2 Z cos(2nnt + @,) :5 =
S ¢
=¥ =
* Same behaviour as quantum kicked rotor I i
SN
CBS & CFS peaks expected at + g for initial peaked state at —g -
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Phase space rotation

Experiments
Conclusion

* The CBS and CFS peaks occur in each lattice cell : P(x) reflects the presence of the peaks

* We can use a static lattice dynamics to transfer information from P(x) onto P(¥)

T, ot period of harmonic oscillator

Lrot ~ Trot/4

X, center of harmonic oscillator w.r.t. the center of the cell




GIF edited with https://ezgif.com/effects
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Phase space rotation

Experiments
Conclusion

* The CBS and CFS peaks occur in each lattice cell : P(x) reflects the presence of the peaks

* We can use a static lattice dynamics to transfer information on P(x) onto P(¥)

T, ot period of harmonic oscillator

Lrot ~ Trot/4

X, center of harmonic oscillator w.r.t. the center of the cell

CES with nhacse cshift ¥ = — T

X, : Phase shift to center the
well on the peak

28
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Full measurement

Experiments
Conclusion

Initial state : prepared with Optimal Control Ny = 4, heff =2.89,L ~ 24,&,, ~ 4.5
STATE PREPARATION PHASE-SPACE ROTATION MEASUREMENTS
ﬁ"mw TJ_I_I_U_U_\_I_IJ' 'IJ_\_I_IJ'U_I_I_[I' 15 3
) t \/\(U»/\J\/\A-/\/\J \/\f\-/\/\/»/\\-/\/\f 12,8
t, +NT too+ NT+1,,
| P,(p, NT|x=0, %)
P,(p, NT|x,=0, £3)
Pu(p, NT|x,=0, £5)
P(0, NT| x;,)
g |9
(@]
22
£}
o
L Fhm c
R . _n 0 T
I 0 = 0 0.5 1 T 0 C 5 5
2 x ° #2 tIT 2y 2 2 Xy 2
) M Numerical

Experimental

Signature of weak and strong localization transfered in momentum space ! 29



Results

Localized Bounded

Nl
Nl a

T
2

Nl a

When PT-symmetry is broken : no CBS !
CFS: robust to symmetry-breaking

7 1SBJJU0D

Numerical

Infroduction
Quantum simulation
Localization
Quantum pendulum
Experiments
Conclusion

floc > L

L > floc

Experimental

30
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State reconstruction

Experiments
Conclusion

With the quantum state tomography — reconstruction of the disorder-averaged Husimi :

No-PT symmetry
No CBS
& CFS expected

No PT-sym

Initial state

PT symmetry
CBS & CFS expected

Experimental 31
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Conclusion

Experiments
Conclusion

e Cold atoms (BEC) are a good platform for quantum simulation

* Control of parameters, preparation and detection allow to implement and study
guantum models

* One example of periodic driving (Floquet engineering): the kicked/shaken rotor

» Allowed us to realize a first direct observation of CBS and CFS peaks together
using phase-space rotation or density matrix reconstruction
(should go on the arxiv this week)

32
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Thanks — Cold Atoms team & Collaborators

Experiments
Conclusion

ohD | May 2022 ohD

Postdoc
2020-2022

Laboratoire Interdisciplinaire
Carnot de Bourgogne

E. Dionis
33
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Thanks — Cold Atoms team & Collaborators

Experiments
Conclusion

October 2024
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