

Experiments with Bose-Einstein condensates

From atom cooling to quantum control and simulation

QuanTEEM Winter School Dijon, 24/02/2025

Bruno Peaudecerf (CNRS)

Lecture III Quantum simulation

Introduction

In general, we can try to calculate or simulate a phenomenon to gain understanding

"Classical" simulation: astronomical clocks

Identify mechanisms + implement them in analog device

Many quantum phenomena are hard to calculate on a (classical) computer.

T. Fukuhara *et al., Nature Physics* **9**, 235–241 (2013)

Quantum simulation

Nature isn't classical, (...), and if you want to make a simulation of nature, you'd better make it quantum mechanical.

Introduction

Introduction Quantum simulation Localization Quantum pendulum Experiments Conclusion

- Bose-Einstein condensates (ultracold atoms generally) are a versatile platform for quantum simulation :
 - Potentials can be engineered with light (e.g. lattice without defects)

Optical lattices Tweezer arrays

Kaufman (JILA)

- Interactions can be controlled

Z

Vary density, Magnetic (Feshbach) resonances

State can be prepared and measured with precision

Single fermions on a 2D lattice

Kuhr (Strathclyde, Glasgow)

Introduction Quantum simulation Localization Quantum pendulum Experiments Conclusion

Examples of quantum simulation with cold atoms

Localization and coherent scattering

Realization with a quantum pendulum

Experiments with BEC

Examples of quantum simulation with cold atoms

Localization and coherent scattering

Realization with a quantum pendulum

Experiments with BEC

Mott insulator: a conducting material becomes insulating at low temperature due to electron-electron interactions.

Simulation: cold atoms in an optical lattice

Strong interactions: the system can be described by the **Hubbard Hamiltonian**:

Introduction

Localizatior

xperiments

Quantum pendulum

Quantum simu

$$\begin{split} \hat{H} = -J \sum_{\langle i,j \rangle,\sigma} \hat{c}_{i,\sigma}^{+} \hat{c}_{j,\sigma} + U \sum_{i} \hat{n}_{i\uparrow} \hat{n}_{i\downarrow} - \sum_{i,\sigma} \left(\mu - \varepsilon_{i,\sigma} \right) \hat{n}_{i,\sigma} \\ \text{Competition between delocalization from} \\ \text{tunneling and increased interaction} \quad \mathbf{3} \end{split}$$

Many-body physics : the Mott transition

Increasing density
 → energetically favorable for atoms to localize on the sites of the lattice

Quantum phase transition

between a *delocalized superfluid* (BEC)
→ peaks in the momentum distribution
and *localized atoms, without global coherence*→ momentum distribution of a "single well"

Quantum sim

Localizatio

Quantum pendulum

Many-body physics : the Mott transition

tunnelling interactions

Increasing density
 → energetically favorable for atoms to localize on the sites of the lattice

Quantum phase transition between a *delocalized superfluid* (BEC) → peaks in the momentum distribution

→ peaks in the momentum distribution
 and *localized atoms, without global coherence* → momentum distribution of a "single well"

First experimental observation: Greiner et al., Nature **415**, 39 (2002) **The birth of quantum simulation**

Quantum simu

Localizatior

Many-body physics : the Mott transition

Introduction Quantum simulation Localization Quantum pendulum Experiments Conclusion

A few years later: quantum gas microscope allows to look at the spatial distribution of atoms.

BEC

Mott insulator

J. Sherson et al., Nature 467, 68 (2010)

Artificial magnetic fields

Introduction Quantum simulation Localization Quantum pendulum Experiments Conclusion

Lorentz force on charged particle in a magnetic field: $F = q\mathbf{v} \times \mathbf{B}$

Neutral atoms have no charge!

setting BECs in rotation

Artificial magnetic fields

Engels *et al. Phys. Rev. Lett.* **90,** 170405 (2003) (Cornell group/JILA)

The way the condensate reacts to the rotation is to include *vortices,* zeroes in density around which the phase does a full turn: vortex=quantum of rotation

Artificial magnetic fields

0.2

-0.2 0 0.2 0.4

-0.2

00 05

0

 $\langle X \rangle / d_x$

0.2

Time (ms)

0.1

-0.1

-0.2

×p/⟨x -0.25

-0.4

Time (ms)

⟨Y⟩/d_y

Charged particles in a magnetic field acquire a *phase* around a closed trajectory *C* : *Aharonov-Bohm phase* $\Phi_{AB} = \int_C A dx$

Engineer *complex-valued tunneling* with laser-induced transitions in a lattice

 \rightarrow effective magnetic flux: controllable, staggered

Physics of Hall effect:

Cyclotron-like orbits of cold atoms in a lattice with artificial magnetic field

M. Aidelsburger et al., Phys. Rev. Lett. **107**, 255301 (2011)

Fermionic systems

Introduction Quantum simulation Localization Quantum pendulum Experiments Conclusion

equation of state $P(\mu, T)$ of the Fermi gas in the unitary limit $a \rightarrow \infty$

Ultracold *fermions* can also be prepared mixture of two states $|\uparrow\rangle$ and $|\downarrow\rangle$

Interactions (scattering length a_S) can be tuned via a *Feshbach resonance* $a_S(B)$

A regime encountered in neutron stars

Data from Ku et al., Science **335**, 563 (2012)

Many other systems

Introduction Quantum simulation Localization Quantum pendulum Experiments Conclusion

Superconducting qubits

NV centers

Photonic circuits

Trapped ions

Neutral-atom tweezer arrays

Etc.

Localization effects

Introduction Quantum simulation **Localization** Quantum pendulum Experiments Conclusion

A detour through condensed matter physics

How do we understand conduction in solids? **Drude model:**

- Electrons feel the force of the electric field F = -eE
- Electrons scatter randomly in impurities/defects in the solid with mean free path ℓ_s

The electrons effectively perform a random walk:

Diffusion contribution to conductivity

Quantum simu Localization Quantum pendulum

The random walk is associated to a diffusion process:

• The diffusion constant is a key quantity for conductivity

In general, $\mathbf{j} = \sigma \mathbf{E}$ with $\sigma = e^2 \times \rho(\mathbf{E}) \times D(\mathbf{E})$ ($\mathbf{E} = \text{typical energy of charge carriers}$) $\rho(E) = \text{density of states of}$ D(E) = Diffusion constantcharge carriers = 0 for an insulator, high for a good conductor

Diffusion with quantum particles

 If we think of the diffusion of quantum particles, we have to consider all amplitudes of probability connecting two points:

Transfer probability: $p_{1\to 2} = \left| \sum_{i} a_i (1 \to 2) \right|^2 \quad (i = \text{possible paths})$ $p_{1\to 2} = \sum_{i} |a_i|^2 + \sum_{i\neq j} |a_i| |a_j| e^{i(\theta_i - \theta_j)}$

 To describe typical properties of solids, theorists perform an average over disorder (statistical average over position of scatterers)

$$\bar{p}_{1\to 2} = \sum_{i} \overline{|a_i|^2} + \sum_{i\neq j} \overline{|a_i| |a_j| e^{\iota(\theta_i - \theta_j)}}$$

Interference term with (random) phase differences that depend on disorder average $\simeq 0$

Classical term (sum of probabilities) Quantum sim

Localization Quantum pendulum

Weak localization

Introduction Quantum simulation **Localization** Quantum pendulum Experiments Conclusion

$$\bar{p}_{1\to 2} = \sum_{i} \overline{|a_i|^2} + \sum_{i\neq j} \overline{|a_i| |a_j| e^{\iota(\theta_i - \theta_j)}}$$

 $p_{\text{class},1 \rightarrow 2}$

average $\simeq 0$

Is there no difference between **particles** and **waves**?

There is, for looped trajectories:

If the dynamics is **time-reversible**, the reverse path has exactly the **same phase** as the direct path:

- non-zero interference contribution (positive)
- → Enhanced return probability:

Weak localization

- \rightarrow Reduced diffusion
- \rightarrow Conductivity is decreased! $\sigma = e^2 \rho D$

Weak localization

Introduction Quantum simulation **Localization** Quantum pendulum Experiments Conclusion

- The quantum effect of weak localization should decrease conductivity/increase resistance
- Experimental evidence? Place conductor in a magnetic field:break time-reversal symmetry

Experiment on a magnesium film (Bergman, Phys. Rep. 107, 1984) Breaking of weak localization reduces resistance!

12

Quant Localizatior Quantum pendulum

• Philip W. Anderson (1923-2020)

Strong localization

In the presence of "strong enough" disorder, total suppression of diffusion:

A cumulative effect of many loops:

D = 0

the probability to diffuse is **destroyed by destructive interference**

Anderson model:

 $\sigma = e^2 \rho D = 0$

$$H = \sum_{i} \left[W_{i} | i \rangle \langle i | + t \left(| i + 1 \rangle \langle i | + | i \rangle \langle i + 1 | \right) \right]$$

Random on-site Uniform coupling

energy

constant between sites

 W_i

A peculiar **insulator**: charge carriers are available ($\rho \neq 0$),

but cannot diffuse! Anderson insulator

Strong localization

• Philip W. Anderson (1923-2020)

In the presence of "strong enough" disorder, total suppression of diffusion:

A cumulative effect of many loops: the probability to diffuse is **destroyed by destructive interference**

D = 0

A peculiar **insulator**: charge carriers are available ($\rho \neq 0$),

but cannot diffuse! Anderson insulator

Theory predicts Anderson localization:

- always in true 1D and 2D systems
- Above a certain energy (mobility edge) in 3D

Signatures in reciprocal space

antum simulation Localization Intum pendulum Experiments Conclusion

- We have considered transition probabilities between positions (diffusion) with scatterers randomly distributed in space
- What about **momentum**?

Consider a plane wave, incident on the same kind of disordered medium

interface

Two scattering paths contributing to diffusion from plane wave with ${f k_1}$ to ${f k_2}$

As before, to get the probability of transfer from 1 to 2, we need to sum amplitudes

$$p_{1\rightarrow 2} = \sum_{i} |a_i|^2 + \sum_{i\neq j} |a_i| |a_j| e^{\iota(\theta_i - \theta_j)}$$

In general, the disorder average washes out the interference terms

$$\bar{p}_{1 \to 2} \simeq p_{\text{class}, 1 \to 2}$$

Coherent backwards scattering

Does plane wave scattering always behave classically? No!

$$p_{1\to 2} = \sum_{i} |a_i|^2 + \sum_{i\neq j} |a_i| |a_j| e^{\iota(\theta_i - \theta_j)}$$

For a time-reversible system, if $k_2 = -k_1$, the reverse path contributes constructively

Doubling of the probability to scatter backwards: **Coherent Backwards Scattering (CBS)** A signature in reciprocal space of Weak Localization

Coherent backwards scattering

Introduction Quantum simulation **Localization** Quantum pendulum Experiments Conclusion

• A simple experiment:

From: "Disorder and interference", C. Müller and D. Delande, Lecture at Les Houches, 2009

Single pattern: **speckle** from multiple scattering Average pattern: CBS peak

Has been observed with multiple waves and scatterers: light, acoustic, seismic, matter waves...

F. Jendrzejewski et al, PRL **109**, 195302 (2025)

Coherent forward scattering

Is there a signature in the scattering of plane waves of strong localization?

Yes, Coherent Forward Scattering (CFS)

Has only been observed numerically, or *indirectly in experiments*

Karpiuk et al., PRL 109, 190601 (2012)

Can be seen as a sort of "double backscattering"

Is associated with strong (Anderson) localization

Quantum

Localization Quantum pendulum

The quantum pendulum

Dynamics of a pendulum:

$$\widehat{H} = -\frac{\hbar^2}{2mL^2}\frac{d^2}{d\phi^2} + mgL(1-\cos\phi)$$

Exactly analogous to the lattice potential

 $\begin{array}{l} x \leftrightarrow \phi \\ s \leftrightarrow g \end{array}$

A "depth" variation s(t) corresponds to moving the pivot point up and down

A "phase" variation $\cos(\phi + \varphi(t))$ corresponds to adding a forced rotation

 $\mathbf{1}$ $= 2\pi x/d$ $V(x), |\psi(x)|^2$ 0 d

> Our system is also called "shaken pendulum" "shaken rotor"

Quantum simu

Quantum pendulum

Localization

Experiments

The quantum pendulum

Special connection between the **shaken pendulum** and **disorder physics** Kicked rotor model:

$$\widehat{H}(t) = \frac{\widehat{p}^2}{2} - K\cos(\widehat{x})\sum_n \delta(t-n)$$

Periodic "kick" of infinite strength with the potential

(units chosen so that period $T \equiv 1$, spatial period $d \equiv 2\pi$

• What is the classical dynamics? Between kicks, momentum is constant: call (x_n, p_n) the coordinates just before the kick at t = n:

$$p_{n+1} = p_n - K \sin(x_n) \\ x_{n+1} = x_n + p_{n+1}$$

Standard map

Emblematic model of **chaotic dynamics**

-

_

some trajectories remain close to an orbit: regular trajectories

Stroboscopic phase portrait

Some trajectories explore all of the phase space at random: chaotic trajectories

Classical dynamics of kicked rotor

Periodically modulated system:

represent the trajectory in phase space at each period

Classical dynamics of kicked rotor

 Periodically modulated system: represent the trajectory in phase space at each period

For a strong enough kick, all trajectories are chaotic

Quantum simi

Quantum pendulum

Localizatior

Experiments

Momentum evolves diffusively:

$$\overline{p^2} \simeq \frac{K^2}{2}t$$

Introduction Quantum simulation Localization **Quantum pendulum** Experiments Conclusion

$$\widehat{H}(t) = \frac{\widehat{p}^2}{2} - K\cos(\widehat{x})\sum_n \delta(t-n)$$

The evolution operator over 1 period is always the same:

$$U_T = \exp\left(-\frac{i\hat{p}^2}{2\hbar_e}\right) \exp\left(\frac{iK\cos(\hat{x})}{\hbar_e}\right)$$

Here $\hbar_e = -i[x, p]$ is an **effective Planck constant**:

$$\hbar_e = \frac{4\pi E_L T}{h}$$

State evolution : $|\psi(t = n)\rangle = U_T^n |\psi(0)\rangle$

Momentum state $|p = \ell \hbar_e \rangle$

acquires a phase during a period:

The free evolution operator

to diffusive trajectories

 $(\hbar_{\rho}/4\pi \notin \mathbb{Q})$

gives **pseudo-random phases**

 $\phi_{\ell} = -\frac{\ell^2 \hbar}{2}$

Introduction Quantum simulation Localization **Quantum pendulum** Experiments Conclusion

What does the evolution over one period do?

$$U_T = \exp\left(-\frac{i\hat{p}^2}{2\hbar_e}\right) \exp\left(\frac{iK\cos(\hat{x})}{\hbar_e}\right)$$

$$\cos(\hat{x}) = \frac{1}{2} \left(e^{\frac{i\hat{x}\hbar_e}{\hbar_e}} + e^{-\frac{i\hat{x}\hbar_e}{\hbar_e}} \right)$$

 \rightarrow Translations in momentum of $\pm \hbar_e$

The **kick operator**
$$\exp\left(-\frac{K\cos(\hat{x})}{\hbar_e}\right)$$

connects states on a ladder of momenta $|p = \ell \hbar_e \rangle \ (\ell \in \mathbb{N})$: **Diffusion on momentum ladder**

Diffusion + Random phases = ingredients for localization!

$$U_T = \exp\left(-\frac{i\hat{p}^2}{2\hbar_e}\right)\exp\left(\frac{iK\cos(\hat{x})}{\hbar_e}\right)$$

A state initially peaked in momentum experiences dynamical localization (localization in momentum space)

After many periods of evolution Characterized by a localization length ξ_{loc}

And in reciprocal space? Can we see CBS and CFS with the kicked rotor?

Quantum dynamics

Introduction Quantum simulation Localization **Quantum pendulum** Experiments Conclusion

Can we see CBS and CFS with the kicked rotor?

Solid state physics:

- Diffusion/localization in x
- Reciprocal space p hosts CBS and CFS
- CBS for *time-reversal symmetry*:

$$\begin{array}{l} x \to x \\ p \to -p \\ t \to -t \end{array}$$

Kicked rotor:

- Diffusion/localization in p
- Reciprocal space *x* hosts CBS and CFS
- CBS for time-parity symmetry

 $p \to p$ $x \to -x$ $t \to -t$

peaked initial condition in momentum \rightarrow localization, peaked initial condition in position \rightarrow CBS and CFS

CBS and CFS in the kicked rotor

Simulations with the kicked rotor $K = 10, \hbar_e = 1,$

t = 200, another peak! return of probability at $x = \pi/2$ Coherent Forward Scattering!

Introduction

Localization

Experiments Conclusion

Quantum simulation

Quantum pendulum

An infinitely short/strong kick is not realistic.

• Shaken-rotor model :

- Generalization of QKR : equivalent if $\varphi(t) = 0$ and $N_H \to \infty$
- **Finite** and **tunable chaotic sea** $(L \propto N_H)$: control of localization regime
- **Disorder average** using **different** $F(\tau)$ inducing differents dynamics
- Additional phase modulation

م

An infinitely short/strong kick is not realistic.

• Shaken-rotor model :

• Same behaviour as quantum kicked rotor

CBS & CFS peaks expected at $\pm \frac{\pi}{2}$ for initial peaked state at $-\frac{\pi}{2}$

Introductior

Localization

Experiments

Quantum sim

Quantum pendulum

Phase space rotation

Quant Localizatior Quantum pendulum Experiments

- The CBS and CFS peaks occur in each lattice cell : P(x) reflects the presence of the peaks
- We can use a static lattice dynamics to transfer information from P(x) onto $P(\ell)$

 $t_{rot} \sim T_{rot}/4$ T_{rot} period of harmonic oscillator

 x_r center of harmonic oscillator w.r.t. the center of the cell

Phase space rotation

Introduction Quantum simulation Localization Quantum pendulum **Experiments** Conclusion

- The CBS and CFS peaks occur in each lattice cell : P(x) reflects the presence of the peaks
- We can use a static lattice dynamics to transfer information on P(x) onto $P(\ell)$

 $t_{rot} \sim T_{rot}/4$

 T_{rot} period of harmonic oscillator x_r center of harmonic oscillator w.r.t. the center of the cell

 x_r : **Phase shift** to center the well **on the peak**

Full measurement

Initial state : prepared with Optimal Control

Signature of weak and strong localization transfered in momentum space !

Results

Introduction Quantum simulation Localization Quantum pendulum **Experiments** Conclusion

State reconstruction

Introduction Quantum simulation Localization Quantum pendulum **Experiments** Conclusion

With the quantum state tomography → reconstruction of the disorder-averaged Husimi :

- Cold atoms (BEC) are a good platform for *quantum simulation*
- Control of parameters, preparation and detection allow to *implement* and *study* quantum models
- One example of *periodic driving* (Floquet engineering): the kicked/shaken rotor
- Allowed us to realize a first direct observation of CBS and CFS peaks together using phase-space rotation or density matrix reconstruction (should go on the arxiv this week)

Thanks – Cold Atoms team & Collaborators

Introduction Quantum simulation Localization Quantum pendulum Experiments **Conclusion**

M. Arnal, N. Ombredane, N. Dupont, L. Gabardos, B. Peaudecerf, J. Billy, D. Guéry-Odelin, F. Arrouas, G. Chatelain

Postdoc 2020-2022

D. Sugny,

E. Dionis

Thanks – Cold Atoms team & Collaborators

JL SABATIER

Introduction Quantum simulation Localization Quantum pendulum Experiments **Conclusion**

October 2024

F. Arrouas, D. Ronco, N. Ombredane, Q. Levoy, E. Flament, D. Guéry-Odelin, B. Peaudecerf, S. Faure, J. Billy

