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Introduction

• In general, we can try to calculate or simulate a 
phenomenon to gain understanding

• Many quantum phenomena are hard to 
calculate on a (classical) computer.

Quantum simulation
Nature isn’t classical, (…), and if you want to make a 
simulation of nature, you’d better make it quantum 
mechanical.

R.P. Feynman, Int. J. Theor. Phys. 21, 467488 (1982)

T. Fukuhara et al., Nature Physics 9, 235–241 (2013)

“Classical” simulation:
astronomical clocks

Identify mechanisms
+ implement them
in analog device
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• Bose-Einstein condensates (ultracold atoms generally)
are a versatile platform for quantum simulation :

– Potentials can be engineered with light
(e.g. lattice without defects)

– Interactions can be controlled

– State can be prepared and measured with
precision

Optical lattices
Tweezer arrays

Bloch (MPQ) Kaufman (JILA)

Vary density,
Magnetic (Feshbach) resonances

Single fermions 
on a 2D lattice

Kuhr (Strathclyde, Glasgow)
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Examples of quantum simulation with cold atoms

Localization and coherent scattering

Realization with a quantum pendulum

Experiments with BEC
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Many-body physics : the Mott transition

Simulation:  cold atoms in an optical lattice
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tunnelling interactions

Mott insulator: a conducting material becomes insulating at low temperature
due to electron-electron interactions.

Potential from ions

- - -

Potential from lasers
Atoms

Electrons

Strong interactions: the system can be described
by the Hubbard Hamiltonian:

Competition between delocalization from
tunneling and increased interaction 3
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Many-body physics : the Mott transition

εi

J U
tunnelling interactions

Increasing density
 energetically favorable for atoms to 
localize on the sites of the lattice

Quantum phase transition
between a delocalized superfluid (BEC)
 peaks in the momentum distribution
and localized atoms, without global coherence
momentum distribution of a ‟single wellˮ

position momentum 4
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Many-body physics : the Mott transition

εi

J U
tunnelling interactions

Increasing density
 energetically favorable for atoms to 
localize on the sites of the lattice

Quantum phase transition
between a delocalized superfluid (BEC)
 peaks in the momentum distribution
and localized atoms, without global coherence
momentum distribution of a ‟single wellˮ

First experimental observation: 
Greiner et al., Nature 415, 39 (2002)
The birth of quantum simulation

4
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Many-body physics : the Mott transition

εi

J U
tunnelling interactions

A few years later: quantum gas
microscope allows to look at the spatial 
distribution of atoms.

BEC Mott insulator

J. Sherson et al., Nature 467, 68 (2010) 4
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Artificial magnetic fields

Lorentz force on charged particle in a magnetic field:
𝐹𝐹 = 𝑞𝑞𝐯𝐯 × 𝐁𝐁

Neutral atoms have no charge!

But: Ω

Rotating trap 
in the lab frame

⇔

Inertial force in 
the trap frame
(Coriolis)

𝐹𝐹 = 2𝑚𝑚𝐯𝐯 × 𝛀𝛀

Effective magnetic fields can be implemented by
setting BECs in rotation

Introduction
Quantum simulation

Localization
Quantum pendulum

Experiments
Conclusion



5

Artificial magnetic fields

Engels et al. Phys. Rev. Lett. 90, 170405 (2003)
(Cornell group/JILA)

The way the condensate reacts to the rotation is to include vortices, 
zeroes in density around which the phase does a full turn: 
vortex=quantum of rotation

Introduction
Quantum simulation

Localization
Quantum pendulum

Experiments
Conclusion



5

Artificial magnetic fields

Charged particles in a magnetic field acquire a phase around a closed
trajectory 𝐶𝐶 : Aharonov-Bohm phase Φ𝐴𝐴𝐴𝐴 = ∫𝐶𝐶 𝑨𝑨.𝑑𝑑𝒙𝒙

Engineer complex-valued tunneling with laser-induced
transitions in a lattice
 effective magnetic flux: controllable, staggered

Laser coupling

Cyclotron-like orbits of cold atoms in a lattice
with artificial magnetic field

M. Aidelsburger et al., 
Phys. Rev. Lett. 107, 255301 (2011)

Physics of Hall effect:
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Fermionic systems

Ultracold fermions can also be prepared
mixture of two states | ↑⟩ and ↓

Interactions (scattering length 𝑎𝑎𝑆𝑆) can be tuned via
a Feshbach resonance 𝑎𝑎𝑆𝑆(𝐵𝐵)

One can measure the 
equation of state 𝑃𝑃(𝜇𝜇,𝑇𝑇) of 
the Fermi gas in the unitary
limit 𝑎𝑎 → ∞

Data from Ku et al., Science 335, 563 (2012)

A regime encountered in 
neutron stars

Introduction
Quantum simulation

Localization
Quantum pendulum

Experiments
Conclusion



7

Many other systems

Superconducting qubits

Photonic
circuits

NV centers

Trapped ions

Neutral-atom tweezer arrays

Etc.
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Localization effects

 A detour through condensed matter physics

How do we understand conduction in  solids?
Drude model:
• Electrons feel the force of the electric field 𝐹𝐹 = −𝑒𝑒𝑬𝑬
• Electrons scatter randomly in impurities/defects in the solid

with mean free path ℓ𝑠𝑠

The electrons effectively perform a random walk:

Example of a 2D random walk
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Diffusion contribution to conductivity

 The random walk is associated to a diffusion process:

In 𝑑𝑑 dimensions, the average
distance travelled is

𝑟𝑟2(𝑡𝑡) = 2𝑑𝑑𝑫𝑫𝑡𝑡
Diffusion constant

• The diffusion constant is a key quantity for conductivity
In general, 𝒋𝒋 = 𝜎𝜎𝑬𝑬 with 𝜎𝜎 = 𝑒𝑒2 × 𝜌𝜌(𝐸𝐸) × 𝐷𝐷(𝐸𝐸) (𝐸𝐸 = typical energy of charge carriers)

𝜌𝜌 𝐸𝐸 = density of states of 
charge carriers
= 0 for an insulator,
high for a good conductor

𝐷𝐷 𝐸𝐸 =Diffusion constant

𝐷𝐷 =
𝑣𝑣ℓ𝑠𝑠
𝑑𝑑
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Diffusion with quantum particles

• If we think of the diffusion of quantum particles, we have to consider all
amplitudes of probability connecting two points:

𝑝𝑝1→2 = �
𝑖𝑖
𝑎𝑎𝑖𝑖 1 → 2

2
Transfer probability:

(𝑖𝑖 = possible paths)

𝑝𝑝1→2 = �
𝑖𝑖
𝑎𝑎𝑖𝑖 2 + �

𝑖𝑖≠𝑗𝑗
𝑎𝑎𝑖𝑖 𝑎𝑎𝑗𝑗 𝑒𝑒𝚤𝚤(𝜃𝜃𝑖𝑖−𝜃𝜃𝑗𝑗)

• To describe typical properties of solids, theorists perform an average over disorder
(statistical average over position of scatterers)

𝑝̅𝑝1→2 = �
𝑖𝑖
𝑎𝑎𝑖𝑖 2 + �

𝑖𝑖≠𝑗𝑗
𝑎𝑎𝑖𝑖 𝑎𝑎𝑗𝑗 𝑒𝑒𝚤𝚤(𝜃𝜃𝑖𝑖−𝜃𝜃𝑗𝑗)

Classical term
(sum of probabilities)

Interference term with (random) phase 
differences that depend on disorder

average ≃ 0

10
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Weak localization

𝑝̅𝑝1→2 = �
𝑖𝑖
𝑎𝑎𝑖𝑖 2 + �

𝑖𝑖≠𝑗𝑗
𝑎𝑎𝑖𝑖 𝑎𝑎𝑗𝑗 𝑒𝑒𝚤𝚤(𝜃𝜃𝑖𝑖−𝜃𝜃𝑗𝑗)

𝑝𝑝class,1→2 average ≃ 0

Is there no difference between
particles and waves?

There is, for looped trajectories:

r1 = r2

If the dynamics is time-reversible, the reverse path has exactly
the same phase as the direct path:
non-zero interference contribution (positive)
Enhanced return probability:

Weak localization
Reduced diffusion
Conductivity is decreased! 𝜎𝜎 = 𝑒𝑒2𝜌𝜌𝐷𝐷

11
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Weak localization

• The quantum effect of weak localization should decrease
conductivity/increase resistance

• Experimental evidence? Place conductor in a magnetic
field:break time-reversal symmetry

r1 = r2 𝑩𝑩

0.05Ω

M
ag

ne
to

re
sis

ta
nc

e

Magnetic field 𝐵𝐵

Experiment on a magnesium film
(Bergman, Phys. Rep. 107, 1984)

Breaking of weak localization
reduces resistance!

11
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Strong localization

• Philip W. Anderson (1923-2020)
In the presence of ‟strong enoughˮ disorder,
total suppression of diffusion:

𝐷𝐷 = 0
A cumulative effect of many loops:
the probability to diffuse is destroyed by destructive interference

𝜎𝜎 = 𝑒𝑒2𝜌𝜌𝐷𝐷 = 0
A peculiar insulator: charge carriers are available (𝜌𝜌 ≠ 0),
but cannot diffuse! Anderson insulator

Random on-site
energy

Uniform coupling
constant between sites 𝑊𝑊𝑖𝑖

𝑡𝑡 𝑡𝑡 𝑡𝑡 𝑡𝑡

Anderson model:
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Strong localization

• Philip W. Anderson (1923-2020)
In the presence of ‟strong enoughˮ disorder,
total suppression of diffusion:

𝐷𝐷 = 0
A cumulative effect of many loops:
the probability to diffuse is destroyed by destructive interference

𝜎𝜎 = 𝑒𝑒2𝜌𝜌𝐷𝐷 = 0
A peculiar insulator: charge carriers are available (𝜌𝜌 ≠ 0),
but cannot diffuse! Anderson insulator

Theory predicts Anderson localization:
- always in true 1D and 2D systems
- Above a certain energy (mobility edge) in 3D
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Signatures in reciprocal space

• We have considered transition probabilities between positions (diffusion)
with scatterers randomly distributed in space

• What about momentum?
Consider a plane wave, incident on the same kind of disordered medium

𝑝𝑝1→2 = �
𝑖𝑖
𝑎𝑎𝑖𝑖 2 + �

𝑖𝑖≠𝑗𝑗
𝑎𝑎𝑖𝑖 𝑎𝑎𝑗𝑗 𝑒𝑒𝚤𝚤(𝜃𝜃𝑖𝑖−𝜃𝜃𝑗𝑗)

interface

As before, to get the probability of transfer from
1 to 2, we need to sum amplitudes

In general, the disorder average washes out the 
interference terms

𝑝̅𝑝1→2 ≃ 𝑝𝑝class,1→2

𝒌𝒌𝟐𝟐

𝒌𝒌𝟏𝟏

Two scattering paths contributing to 
diffusion from plane wave with 𝐤𝐤𝟏𝟏 to 𝐤𝐤𝟐𝟐
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Coherent backwards scattering

Does plane wave scattering always behave
classically? No!

For a time-reversible system, if 𝒌𝒌𝟐𝟐 = −𝒌𝒌𝟏𝟏, 
the reverse path contributes constructively

𝒌𝒌𝟐𝟐 = −𝐤𝐤𝟏𝟏

𝒌𝒌𝟏𝟏

𝑝𝑝1→2 = �
𝑖𝑖
𝑎𝑎𝑖𝑖 2 + �

𝑖𝑖≠𝑗𝑗
𝑎𝑎𝑖𝑖 𝑎𝑎𝑗𝑗 𝑒𝑒𝚤𝚤(𝜃𝜃𝑖𝑖−𝜃𝜃𝑗𝑗)

Doubling of the probability to scatter backwards:
Coherent Backwards Scattering (CBS)

A signature in reciprocal space of Weak Localization
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A simple experiment:

Coherent backwards scattering

From: ‟Disorder and interferenceʺ, 
C. Müller and D. Delande, Lecture at Les Houches, 2009

Single pattern:
speckle from multiple 
scattering

Average pattern:
CBS peak

Has been observed with multiple waves and scatterers:
light, acoustic, seismic, matter waves…

F. Jendrzejewski et al, PRL 109, 195302 (2025)
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Coherent forward scattering

 Is there a signature in the scattering of plane waves of strong localization?
Yes, Coherent Forward Scattering (CFS)

Karpiuk et al., PRL 109, 190601 (2012)

Can be seen as a sort of 
‟double backscatteringˮ

Is associated with strong
(Anderson) localization

16

Has only been observed numerically, or 
indirectly in experiments
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The quantum pendulum

 Dynamics of a pendulum:

�𝐻𝐻 = −
ℏ2

2𝑚𝑚𝐿𝐿2
𝑑𝑑2

𝑑𝑑𝜙𝜙2 + 𝑚𝑚𝑚𝑚𝑚𝑚(1 − cos𝜙𝜙)

Exactly analogous to the lattice potential
𝑥𝑥 ↔ 𝜙𝜙
𝑠𝑠 ↔ 𝑔𝑔

A ‟depthˮ variation 𝑠𝑠(𝑡𝑡) corresponds to 
moving the pivot point up and down

A ‟phaseˮ variation cos 𝜙𝜙 + 𝜑𝜑 𝑡𝑡
corresponds to adding a forced rotation

𝐿𝐿 𝒈𝒈

⇕

Our system is also called
‟shaken pendulumˮ

‟shaken rotorˮ

𝜙𝜙 = 2𝜋𝜋𝜋𝜋/𝑑𝑑
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The quantum pendulum

Special connection between the shaken pendulum and
disorder physics
Kicked rotor model:

�𝐻𝐻 𝑡𝑡 =
𝑝̂𝑝2

2
− 𝐾𝐾 cos( �𝑥𝑥)�

𝑛𝑛
𝛿𝛿(𝑡𝑡 − 𝑛𝑛)

Periodic ‟kickˮ of infinite strength with the potential

(units chosen so that period 𝑇𝑇 ≡ 1, spatial period 𝑑𝑑 ≡ 2𝜋𝜋

• What is the classical dynamics?
Between kicks, momentum is constant: call (𝑥𝑥𝑛𝑛,𝑝𝑝𝑛𝑛) the 
coordinates just before the kick at 𝑡𝑡 = 𝑛𝑛:

𝑝𝑝𝑛𝑛+1 = 𝑝𝑝𝑛𝑛 − 𝐾𝐾 sin(𝑥𝑥𝑛𝑛)
𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 𝑝𝑝𝑛𝑛+1

Standard map
Emblematic model 
of chaotic dynamics
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Classical dynamics of kicked rotor

 Periodically modulated system: 
represent the trajectory in phase space at each period

M. Martinez (2021)

𝑝𝑝𝑛𝑛+1 = 𝑝𝑝𝑛𝑛 − 𝐾𝐾 sin(𝑥𝑥𝑛𝑛)
𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 𝑝𝑝𝑛𝑛+1

Stroboscopic phase portrait

- some trajectories
remain close to an orbit:
regular trajectories

- Some trajectories
explore all of the phase 
space at random: 
chaotic trajectories

𝐾𝐾 = 3
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Classical dynamics of kicked rotor

 Periodically modulated system: 
represent the trajectory in phase space at each period

M. Martinez (2021)

𝑝𝑝𝑛𝑛+1 = 𝑝𝑝𝑛𝑛 − 𝐾𝐾 sin(𝑥𝑥𝑛𝑛)
𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 𝑝𝑝𝑛𝑛+1

𝐾𝐾 = 10 For a strong enough kick,
all trajectories are chaotic

Momentum evolves
diffusively:

𝑝𝑝2 ≃
𝐾𝐾2

2
𝑡𝑡
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Quantum dynamics

�𝐻𝐻 𝑡𝑡 = �𝑝𝑝2

2
− 𝐾𝐾 cos( �𝑥𝑥)∑𝑛𝑛 𝛿𝛿(𝑡𝑡 − 𝑛𝑛)

The evolution operator over 1 period is always the same:

𝑈𝑈𝑇𝑇 = exp −
𝑖𝑖𝑝̂𝑝2

2ℏ𝑒𝑒
exp

𝑖𝑖𝑖𝑖 cos �𝑥𝑥
ℏ𝑒𝑒

Here ℏ𝑒𝑒 = −𝑖𝑖[𝑥𝑥,𝑝𝑝] is an effective Planck constant:

ℏ𝑒𝑒 =
4𝜋𝜋𝐸𝐸𝐿𝐿𝑇𝑇
ℎ

State evolution : 𝜓𝜓(𝑡𝑡 = 𝑛𝑛) = 𝑈𝑈𝑇𝑇𝑛𝑛 𝜓𝜓(0)
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Quantum dynamics

Momentum state 𝑝𝑝 = ℓℏ𝑒𝑒
acquires a phase during a period:

𝜙𝜙ℓ = −
ℓ2ℏ

2
The free evolution operator
gives pseudo-random phases 
to diffusive trajectories
(ℏ𝑒𝑒/4𝜋𝜋 ∉ ℚ)

 What does the evolution over one period do?

𝑈𝑈𝑇𝑇 = exp −
𝑖𝑖𝑝̂𝑝2

2ℏ𝑒𝑒
exp

𝑖𝑖𝑖𝑖 cos �𝑥𝑥
ℏ𝑒𝑒

cos �𝑥𝑥 = 1
2

(𝑒𝑒
𝑖𝑖�𝑥𝑥ℏ𝑒𝑒
ℏ𝑒𝑒 + 𝑒𝑒−

𝑖𝑖�𝑥𝑥ℏ𝑒𝑒
ℏ𝑒𝑒 )

Translations in momentum of ±ℏ𝑒𝑒

The kick operator exp −𝐾𝐾 cos �𝑥𝑥
ℏ𝑒𝑒

connects states on a ladder of momenta
𝑝𝑝 = ℓℏ𝑒𝑒 (ℓ ∈ ℕ):

Diffusion on momentum ladder

Diffusion + Random phases = ingredients for localization!
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Dynamical localization

𝑈𝑈𝑇𝑇 = exp − 𝑖𝑖 �𝑝𝑝2

2ℏ𝑒𝑒
exp 𝑖𝑖𝑖𝑖 cos �𝑥𝑥

ℏ𝑒𝑒

A state initially peaked in momentum experiences
dynamical localization (localization in momentum space)

After many periods of evolution
Characterized by a localization length 𝝃𝝃𝒍𝒍𝒍𝒍𝒍𝒍

𝝃𝝃𝒍𝒍𝒍𝒍𝒍𝒍

And in reciprocal space?
Can we see CBS and CFS with the kicked rotor?
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• Can we see CBS and CFS with the kicked rotor?

Quantum dynamics

Solid state physics:

- Diffusion/localization in 𝑥𝑥
- Reciprocal space 𝑝𝑝 hosts CBS and CFS
- CBS for time-reversal symmetry:

𝑥𝑥 → 𝑥𝑥
𝑝𝑝 → −𝑝𝑝
𝑡𝑡 → −𝑡𝑡

Kicked rotor:

- Diffusion/localization in 𝑝𝑝
- Reciprocal space 𝑥𝑥 hosts CBS and CFS
- CBS for time-parity symmetry

𝑝𝑝 → 𝑝𝑝
𝑥𝑥 → −𝑥𝑥
𝑡𝑡 → −𝑡𝑡

peaked initial condition in momentum localization, 
peaked initial condition in position  CBS and CFS

24
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CBS and CFS in the kicked rotor

𝑡𝑡 = 0, peaked probability
at 𝑥𝑥 = −𝜋𝜋/2

𝑡𝑡 = 4, probability has flattened
a peak reappears at 𝑥𝑥 = −𝜋𝜋/2
Coherent Backward Scattering!

𝑡𝑡 = 200, another peak!
return of probability at 𝑥𝑥 = 𝜋𝜋/2

Coherent Forward Scattering!

Simulations with the kicked rotor
𝐾𝐾 = 10,ℏ𝑒𝑒 = 1,
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Can we do experiments?

An infinitely short/strong kick is not realistic. 

26

�
�𝓗𝓗𝑺𝑺𝑺𝑺 �𝒙𝒙, �𝒑𝒑, 𝝉𝝉 =

�𝒑𝒑𝟐𝟐

𝟐𝟐
+ 𝑲𝑲 𝒄𝒄𝒄𝒄𝒔𝒔 �𝒙𝒙 𝑭𝑭 𝝉𝝉

�𝒙𝒙, �𝒑𝒑 = 𝒊𝒊𝒊𝒆𝒆𝒆𝒆𝒆𝒆
Kick strength

• Shaken-rotor model :

periodic modulation:

𝑭𝑭 𝝉𝝉 = 𝟏𝟏 + 𝟐𝟐�
𝒏𝒏=𝟏𝟏

𝑵𝑵𝑯𝑯

𝒄𝒄𝒄𝒄𝒄𝒄 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 + 𝝋𝝋𝒏𝒏

• Generalization of QKR : equivalent if 𝜑𝜑 𝑡𝑡 = 0 and 𝑁𝑁𝐻𝐻 → ∞

• Finite and tunable chaotic sea (𝐿𝐿 ∝ 𝑁𝑁𝐻𝐻): control of localization regime

• Disorder average using different 𝑭𝑭 𝝉𝝉
inducing differents dynamics

• Additional phase modulation

+ 𝝋𝝋(𝝉𝝉)

ℓ
=
𝒑𝒑/
ℏ 𝒆𝒆

𝒆𝒆𝒆𝒆

𝒙𝒙

Stroboscopic phase-space

𝑳𝑳
∝
𝟐𝟐𝑵𝑵

𝑯𝑯
+
𝟏𝟏
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Can we do experiments?

An infinitely short/strong kick is not realistic. 
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�
�𝓗𝓗𝑺𝑺𝑺𝑺 �𝒙𝒙, �𝒑𝒑, 𝝉𝝉 =

�𝒑𝒑𝟐𝟐

𝟐𝟐
+ 𝑲𝑲 𝒄𝒄𝒄𝒄𝒔𝒔 �𝒙𝒙 𝑭𝑭 𝝉𝝉

�𝒙𝒙, �𝒑𝒑 = 𝒊𝒊𝒊𝒆𝒆𝒆𝒆𝒆𝒆
Kick strength

• Shaken-rotor model :

periodic modulation:

𝑭𝑭 𝝉𝝉 = 𝟏𝟏 + 𝟐𝟐�
𝒏𝒏=𝟏𝟏

𝑵𝑵𝑯𝑯

𝒄𝒄𝒄𝒄𝒄𝒄 𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 + 𝝋𝝋𝒏𝒏

• Same behaviour as quantum kicked rotor

CBS & CFS peaks expected at ± 𝝅𝝅
𝟐𝟐

for initial peaked state at −𝜋𝜋
2

+ 𝝋𝝋(𝝉𝝉)

𝑳𝑳
∝
𝟐𝟐𝑵𝑵

𝑯𝑯
+
𝟏𝟏ℓ

=
𝒑𝒑/
ℏ 𝒆𝒆

𝒆𝒆𝒆𝒆

𝒙𝒙

Stroboscopic phase-space
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Phase space rotation

• The CBS and CFS peaks occur in each lattice cell : 𝑷𝑷(𝒙𝒙) reflects the presence of the peaks

• We can use a static lattice dynamics to transfer information from 𝑷𝑷(𝒙𝒙) onto 𝑷𝑷(ℓ)

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟/4 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 period of harmonic oscillator
𝑥𝑥𝑟𝑟 center of harmonic oscillator w.r.t. the center of the cell
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Phase space rotation

• The CBS and CFS peaks occur in each lattice cell : 𝑷𝑷(𝒙𝒙) reflects the presence of the peaks

• We can use a static lattice dynamics to transfer information on 𝑷𝑷(𝒙𝒙) onto 𝑷𝑷(ℓ)

𝑡𝑡𝑟𝑟𝑟𝑟𝑟𝑟 ∼ 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟/4 𝑇𝑇𝑟𝑟𝑟𝑟𝑟𝑟 period of harmonic oscillator
𝑥𝑥𝑟𝑟 center of harmonic oscillator w.r.t. the center of the cell

CFS with phase shift 𝒙𝒙𝒓𝒓 = −𝝅𝝅
𝟐𝟐

𝑥𝑥𝑟𝑟 : Phase shift to center the 
well on the peak
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Full measurement

Initial state : prepared with Optimal Control

Signature of weak and strong localization transfered in momentum space !

Numerical
Experimental

𝑁𝑁𝐻𝐻 = 4, ℏ𝑒𝑒𝑒𝑒𝑒𝑒 = 2.89, 𝐿𝐿 ∼ 24, 𝜉𝜉𝑙𝑙𝑙𝑙𝑙𝑙 ∼ 4.5
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Results

When PT-symmetry is broken : no CBS !

𝜉𝜉𝑙𝑙𝑙𝑙𝑙𝑙 ≫ 𝐿𝐿

Numerical
Experimental

𝐿𝐿 ≫ 𝜉𝜉𝑙𝑙𝑙𝑙𝑙𝑙

CFS: robust to symmetry-breaking
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State reconstruction

With the quantum state tomography → reconstruction of the disorder-averaged Husimi :

Experimental

Initial state

PT symmetry
CBS & CFS expected

No-PT symmetry
No CBS 

& CFS expected
No PT-sym

PT-sym
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Conclusion

• Cold atoms (BEC) are a good platform for quantum simulation

• Control of parameters, preparation and detection allow to implement and study
quantum models

• One example of periodic driving (Floquet engineering): the kicked/shaken rotor

• Allowed us to realize a first direct observation of CBS and CFS peaks together 
using phase-space rotation or density matrix reconstruction
(should go on the arxiv this week)
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